中国地质科学院地质研究所,北京 100037
任留东,研究员,博士生导师。长期从事南极地质和变质地质研究,曾参加中国第七、九、十五和二十一次共4次南极科学考察。在南极首次发现硅硼镁铝矿及有关的硼硅酸盐矿物组合,并纠正了西方学者对柱晶石的错误鉴定(误认为电气石);发现并报道了氟磷镁石的一种新多型结构(Wagnerite-Ma5bc,空间群Ia)。获得中华人民共和国人力资源和社会保障部暨国家海洋局联合颁发的“中国极地考察先进个人”荣誉称号(2017)。主持多项国家自然科学基金和中国地质调查项目,现任“极地研究”副主编和中国地质学会变质学专业委员会委员。
纸质出版日期:2023-01-25,
网络出版日期:2022-04-15,
收稿日期:2021-12-14,
录用日期:2021-12-20
扫 描 看 全 文
任留东,王浩.泛非构造及其在中国大陆和邻区的表现[J].中山大学学报(自然科学版),2023,62(01):1-33.
REN Liudong,WANG Hao.The Pan-African event and its manifestation in the China continent and adjacent regions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):1-33.
任留东,王浩.泛非构造及其在中国大陆和邻区的表现[J].中山大学学报(自然科学版),2023,62(01):1-33. DOI: 10.13471/j.cnki.acta.snus.2021D098.
REN Liudong,WANG Hao.The Pan-African event and its manifestation in the China continent and adjacent regions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):1-33. DOI: 10.13471/j.cnki.acta.snus.2021D098.
发端于非洲、进而扩展到整个冈瓦纳古陆,“泛非构造”是发生在新元古代晚期-早古生代期间、主要分布在冈瓦纳古陆范围内的构造-热事件,其表现既有陆块或板块间的缝合、碰撞,也有古老造山带的重新活化。泛非构造之后冈瓦纳得以形成,同时伴随其他大陆的裂解和全球海平面上升,并可在全球范围内形成早古生代的重要不整合。如今,中国大陆,直至亚洲、亚欧,陆续识别出一些泛非期构造的记录,如中国东北地区兴凯地块、佳木斯地块和布列亚地块,显示典型的泛非期变形-变质作用和花岗岩活动;其他一些地块和造山带亦显示泛非构造的影响,如华夏地块、塔里木地块以及青藏高原、中央造山带和中亚造山带,均有泛非期构造或事件的显示。中国境内几乎所有的早古生代造山带、部分的地块亦有泛非期事件或构造的记录。泛非期构造的影响几乎波及到了全球所有大陆,该事件的发生可能是多中心的。亚欧地区的泛非期记录可能源自冈瓦纳周缘的早期裂解、边缘陆块和造山带。泛非期构造的活动基本限于中、下地壳,可能是板内为主的一种过程,并与引张、剪切活动有关,而不限于狭义冈瓦纳内水平方向的挤压、拼贴。泛非期热事件记录或花岗岩侵位常常发生在新元古代早期片麻岩之中,并在泛非期记录之后可发生更为剧烈的加里东期构造,即加里东构造活动对泛非构造有很好的继承性。与泛非期记录有关的活动区可有相对稳定区与活动带的区分,并相间分布,两者在沉积建造、不整合性质、构造变形强度、变质作用、火山类型和岩浆作用均有显著区别。泛非构造与现代板块机制的活动密切相关。板块运动中会造成泛非构造带的俯冲、淹没或剥蚀,可能有隐藏或消失了的泛非构造带。冈瓦纳古陆内的泛非构造带容易成为后期中-新生代大陆裂解的部位,如大西洋的形成。
The Pan-African event was a tectonic-thermal event initiated in Africa and later developed to the whole Gondwana ancient continent in the period of late Neoproterozoic to early Paleozoic with manifestations of suturing and collisions between plates and rejuvenating of ancient orogenic belts. After the Pan-African event, the Gondwana finally consolidated and formed, accompanying the breakup of the other continents on the globe at that time, the sea level rose and resulted in important unconformities on the earth in the Cambrian. Now the Pan-African records have been widely recognized in almost all the early Paleozoic orogens, the continents of China, Asia, and even in some parts of Europe.The Khanka, Jiamusi, and Bureya blocks in NE China have shown typical Pan-African features such as high-grade metamorphism and voluminous granites. Major orogenic belts, like the Tibetan, Central orogen, and Central Asian Orogen, and blocks such as the Cathaysia block,and Tarim blocks also demonstrate the Pan-African effects. Furthermore, the event might have affected all the major continents on the earth with multiple centers. The records of the Pan-African event in Eurasia might result from the initial breakup, marginal blocks, or orogens of Gondwana. The activities in the peri-Gondwana realm were generally confined to the middle or lower crust. The event was possible an intraplate process with extensional and shear activities, but not simply horizontal compression or accretion in the Gondwana
sensu stricto
. Granites or demonstration of the Pan-African event can be found in granitic gneisses of the early Neoproterozoic (Grenville period). The event was followed by the stronger Caledonian movement. Most domains related to the Pan-African event can be subdivided into relatively stable regions and active zones which are alternatively distributed. They show contrasts in sedimentary formation, volcanism, un- or disconformity feature, deformation intensity, metamorphism type and grade, and magmatism activity. Pan-African orogeny has intimate relations with modern plate tectonic regime. Some Pan-African belts may be subducted, submerged, or exhumed in the plate movement, that is, some belts may be concealed or perished. Finally, the Pan-African belts may be the subsequent breakup positions of the continents, such as the formation of the Atlantic Ocean.
泛非构造格林威尔期构造花岗岩不整合大陆裂解冈瓦纳
Pan-African structureGrenville structuregranitesunconformity/disconformitycontinent breakupGondwana.
KENNEDY W Q. The structural differentiation of Africa in the Pan-African (±500 Myrs) tectonic episode[J]. Leeds University Research Institute for African Geology Annual Report, 1964, 8: 48-49.
MEERT J G. A synopsis of events related to the assembly of eastern Gondwana[J]. Tectonophysics, 2003, 362: 1-40.
KRÖNER A, STERN R J. Pan-African orogeny[M] //SELLEY R C,et al, eds. Encyclopedia of geology. Amsterdam: Elsevier, 2004.
Le FORT P, DEBON F, PÊCHER A, et al. The 500 Ma magmatic event in Alpine southern Asia: A thermal episode at Gondwana scale[J].Sciences de la Terre, 1986, 47: 191-209.
VEEVERS J J. Pan-African is Pan-Gondwanaland: Oblique convergence drives rotation during 650-500 Ma assembly[J]. Geology, 2003, 31: 501-504.
MURPHY J B, NANCE R D. Supercontinent model for the contrasting character of late Proterozoic orogenic belts[J]. Geology, 1991, 19: 469-472.
STERN R J.Arc assembly and continental collision in the Neoproterozoic East Africa Orogen: Implications of the consolidation of Gondwanaland[J]. Annu Rev Earth Planet Sci, 1994, 22: 319-351.
GOSCOMBE B, ARMSTRONG R, BARTON J M. Tectonometamorphic evolution of the Chewore inliers: Partial re-equilibration of high-grade basement during the Pan-African orogeny[J]. Journal of Petrology, 1998, 39: 1347-1384.
MEERT J G, van der VOO R, AYUB S. Paleomagnetic investigation of the Neoproterozoic Gagwe lavas and Mbozi Complex,Tanzania and the assembly of Gondwana[J].Precambrian Research,1995,74: 225-244.
GOODGE J W, HANSEN V L, WALKER N W. Neoproterozoic-Cambrian basement-involved orogenesis within the Antarctic margin of Gondwana[J].Geology,1993,100: 91-106.
FOSTER D A, GRAY D R. Evolution and structure of the Lachlan fold belt (orogen) of eastern Australia[J]. Annu Rev Earth Planet Sci, 2000, 28: 47-80.
de BRITO NEVES B B, FUCK R A. The basement of the South American platform: Half Laurentian(N-NW) + half Gondwanan(E-SE) domains[J].Precambrian Research, 2014, 244: 75-86.
BENTO dos SANTOS T M, TASSINARI C C G, FONSECA P E. Diachronic collision, slab break-off and long-term high thermal flux in the Brasiliano-Pan-African orogeny: Implications for the geodynamic evolution of the Mantiqueira Province[J]. Precambrian Research, 2015, 260: 1-22.
PAIXÃO M A P, NILSON A A, DANTAS E L. The Neoproterozoic Quatipuru ophiolite and the Araguaia fold belt, central northern Brazil, compared with cor-relatives in NW Africa[J].Special Publications of the Geological Society of London, 2008, 294: 297-318.
KINNAIRD J, BOWDEN P. African anorogenic alkaline magmatism and mineralization — A discussion with reference to the Niger-Nigerian Province[J]. Geological Journal, 1987, 22: 297-340.
GOSCOMBE B, FOSTER D A, GRAY D, et al. Deformation correlations, stress field switches and evolution of anorogenic intersection: The Pan-African Kaoko-Damara orogenic junction,Namibia[J].Geoscience Frontiers,2017,8(6):1187-1232.
FOSTER D A, GOSCOMBE B D, NEWSTEAD B, et al. U-Pb age and Lu-Hf isotopic data of detrital zircons from Neoproterozoic Damara Sequence: Implications for pre-Gondwana proximity of Congo and Kalahari[J]. Gondwana Research, 2015, 28:179-190.
FRITZ H, ABDELSALAM M, ALI K A, et al. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution[J]. Journal of African Sciences, 2013, 86: 65-106.
BOGER S D, HIRDES W, FERREIRA C A M, et al. The 580-520 Ma Gondwana suture of Madagascar and its continuation into Antarctica and Africa [J]. Gondwana Research, 2015, 28: 1048-1060.
ASHWAL L D, SOLANKI A M, PANDIT M K, et al. Geochronology and geochemistry of Neoproterozoic Mt. Abu granitoids, NW India: Regional correlation and implications for Rodinia paleogeography[J]. Precambrian Research, 2013, 236: 265-281.
HANDLE M J, TUCKER R D, ASHWAL L D. Neoproterozoic continental arc magmatism in west-central Madagascar[J]. Geology, 1999, 27: 351-354.
TUCKER R D, ROIG J Y, MACEY P H, et al. A new geological framework for south-central Madagascar, and its relevance to the out-of-Africa hypothesis[J]. Precambrian Research, 2011, 185: 109-130.
SANTOSH M, MORIMOTO T, TSUTSUMI Y. Geochronology of the khondalite belt of Trivandrum Block, southern India: Electron probe ages and implications for Gondwana tectonics[J]. Gondwana Research, 2006, 9(3): 261-278.
SANTOSH M, TAGAWA T, YOKOYAMA K, et al. U-Pb electron probe geochronology of the Nagercoil granulites, southern India: Implications for Gondwana amalgamation[J]. Journal of Asian Earth Sciences, 2006, 28: 63-80.
KRÖNER A, SANTOSH M, HEGNER E, et al. Palaeoproterozoic ancestry of Pan-African high-grade granitoids in southernmost India: Implications for Gondwana reconstructions[J]. Gondwana Research, 2015, 27: 1-37.
MUKHOPADHYAY D, BASAK K. The Eastern Ghats Belt — A polycyclic granulite terrain[J]. Journal of the Geological Society of India, 2009, 73(4): 489-518.
ISLAM M S, SHINJO R, KAYAL J R. Pop-up tectonics of the Shillong Plateau in northeastern India: Insight from numerical simulations[J].Gondwana Research,2011,20: 395-404.
KRIEGSMAN L M. The Pan-African event in East Antarctica: A view from Sri Lanka and the Mozambique Belt[J]. Precambrian Research, 1995,75: 263-277.
TAKAMURA Y, TSUNOGAE T, SANTOSH M, et al. Detrital zircon geochronology of the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation[J]. Geosci Front, 2018,9(2): 355-375.
ZHAO Y, SONG B, WANG Y, et al. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, et al,eds. Recent progress in Antarctic earth science.Tokyo:Terra Scientific Publishing Company,1992:155-161.
LIU X C, ZHAO Y, HU J M. The c.1 000-900 Ma and c.550-500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution[J]. Special Publications of the Geological Society of London, 2013, 383: 95-112.
REN L D, ZONG S, WANG Y B, et al. Distribution domains of the Pan-African event in East Antarctica and adjacent areas[J].Advances in Polar Science,2018,29(2): 87-107.
JACOBS J, FANNING C M, BAUER W. Timing of Grenville-age vs. Pan-African medium to high grade metamorphism in western Dronning Maud Land (East Antarctica) and significance for correlations in Rodinia and Gondwana[J]. Precambrian Research,2003, 125: 1-20.
ESTRADA S, LÄUFER A, ECKELMANN K, et al. Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin — Implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica[J]. Gondwana Research, 2016, 37: 426-448.
CAWOOD P A, BUCHAN C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth Sci Rev, 2007, 82(3/4): 217-256.
HARLEY S L,KELLY N M. Ancient Antarctica: the Archaean of the East Antarctic Shield[M] // van KRANENDONK M J,et al,eds.Developments in Precambrian geology:Earth's oldest rocks. Amsterdam:Elsevier,2007:149-186.
CLARK C, KINNY P D, HARLEY S L. Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: Evidence for a piece of Chinese Antarctica?[J] Precambrian Research, 2012, 196/197: 23-45.
RAVIKANT V. Palaeoproterozoic (1.9 Ga) extension and breakup along the eastern margin of the Eastern Dharwar Craton, SE India: New Sm-Nd isochron age constraints from anorogenic mafic magmatism in the Neoarchean Nellore greenstone belt[J].Journal of Asian Earth Sciences,2010,37: 67-81.
WALSH A K, RAIMONDO T, KELSEY D E, et al. Duration of high-pressure metamorphism and cooling during the intraplate Petermann Orogeny[J]. Gondwana Research, 2013, 24(3/4): 969-983.
KSIENZYK A K, JACOBS J, BOGER S D, et al.U-Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex:Evidence of two orogenic cycles in Western Australia[J].Precambrian Research,2012,198/199: 37-50.
VEEVERS J J. Emergent long-lived Gondwanaland vs submergent short-lived Laurasia: Supercontinental and Pan-African heat imparts long-term buoyancy by mafic underplating[J]. Geology, 1995, 23:1131-1134.
POWELL C McA, PISAREVSKY S A. Late Neoproterozoic assembly of East Gondwana[J]. Geology, 2002, 30: 3-6.
MERDITH A S, COLLINS, A S, WILLIAMS S E, et al. A full-plate global reconstruction of the Neoproterozoic[J].Gondwana Research, 2017, 50: 84-134.
RAJESH H M, SANTOSH M, YOSHIDA M. The felsic magmatic province in East Gondwana: Implications for Pan-African tectonics[J]. Journal of Southeast Asian Earth Sciences, 1996, 14(3/4): 275-291.
SILVA L C, GRESSE P G, SCHEEPERS R, et al. U-Pb SHRIMP and Sm-Nd age constraints on the timing and sources of the Pan-African Cape Granite Suite, South Africa [J]. Journal of African Earth Sciences, 2000, 30: 795-815.
TURNER C C, MEERT J G, PANDIT M K, et al. A detrital zircon U-Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin, India: Implications for basin evolution and paleogeography[J]. Gondwana Research, 2014, 26(1): 348-364.
MORTIMER N N, CAMPBELL H J, TULLOCH A J, et al. Zealandia: Earth's hidden continent[J].GSA Today, 2017, 27: 27-35.
MEERT J G, van der VOO R. The assembly of Gondwana 800-550 Ma[J].Journal of Geodynamics,1997,23: 223-235.
JAHN B, CABY R, MONIE P. The oldest UHP eclogites of the world: Age of UHP metamorphism, nature of protoliths and tectonic implications[J]. Chemical Geology, 2001, 178(1/2/3/4): 143-158.
BEURLEN H, da SILVA FILHO A F, GUIMARÃES I P, et al. Proterozoic c-type eclogites hosting unusual Ti-Fe±Cr±Cu mineralization in northeastern Brazil[J]. Precambrian Resesrch,1992, 58: 195-214.
JOHN T, SCHENK V, HAASE K F, et al. Evidence for a Neoproterozoic ocean in south-central Africa from mid-oceanic-ridge-type geochemical signatures and pressure-temperature estimates of Zambian eclogites[J]. Geology, 2003, 31: 243-246.
SCHMÄDICKE E, WILL T. First evidence of eclogite-faciesmetamorphism in the Shackleton Range, Antarctica: Tracer of a suture between East and West Gondwana?[J]. Geology, 2006, 34: 133-136.
MYERS J S, SHAW R D, TYLER I M. Tectonic evolution of Proterozoic Australia[J].Tectonics,1996,15: 1431-1446.
CAWOOD P A. Terra Australis orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic[J]. Earth-Science Reviews, 2005, 69: 249-279.
CAWOOD P A,STRACHAN R A,PISAREVSKY S A, et al. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 2016, 449: 118-126.
LI Z X, EVANS D A D. Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longer-lasting Rodinia[J]. Geology, 2011, 39: 39-42.
CONDIE K, PISAREVSKY S A, KORENAGA J, et al. Is the rate of supercontinent assembly changing with time?[J] Precambrian Research, 2015, 259: 278-289.
DOIG R. An alkaline rock province linking Europe and North America[J].Canadian Journal of Earth Sciences,1970,7(1): 22-28.
BOND G C, NICKERSON P A, KOMINZ M A. Breakup of a supercontinent between 625 and 555 Ma: New evidence and implications for continental histories [J].Earth and Planetary Science Letters, 1984, 70: 325-345.
NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 2014, 25: 4-29.
GRUNOW A, HANSON R, WILSON T. Were aspects of Pan-African deformation linked to Iapetus opening?[J]. Geology, 1996, 24: 1063-1066.
VEEVERS J J, SAEED A. Age and composition of Antarctic bedrock reflected by detrital zircons, erratics, and recycled microfossils in the Prydz Bay-Wilkes Land-Ross Sea-Marie Byrd Land sector (70°-240°E)[J]. Gondwana Research,2011,20: 710-738.
HUANG Q Y, KAMENETSKY V S, MCPHIE J, et al. Neoproterozoic (ca.820-830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province[J]. Precambrian Research, 2015, 271: 160-172.
LI Z X, BOGDANOVA S V, COLLINS A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160: 179-210.
PANKHURST R J, RAPELA C W, FANNING C M, et al. Gondwanide continental collision and the origin of Patagonia[J]. Earth-Science Reviews, 2006, 76(3): 235-257.
XU X, SONG S G, SU L, et al. The 600-580 Ma continental rift basalts in North Qilian Shan, Northwest China: Links between the Qilian-Qaidam block and SE Australia, and the reconstruction of East Gondwana[J]. Precambrian Research, 2015, 257: 47-64.
MARUYAMA S, LIOU J G, SENO T. Mesozoic and Cenozoic evolution of Asia[M] // BEN-AVRAHAM Z,ed.The evolution of the Pacific Ocean margins. UK:Oxford Univ, 1989:75-99.
DÖRR W, ZULAUF G, FIALA J, et al. Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá-Barrandian unit—A correlation of U-Pb isotopic-dilution-TIMS ages (Bohemia,Czech Republic)[J]. Tectonophysics, 2002, 352: 65-85.
O’BRIEN S J, O’BRIEN B H, DUNNING G R, et al. Late Neoproterozoic Avalonian and related peri-Gondwana rocks of the Newfoundland Appalachians[M] // NANCE R D,et al, eds. Avalonian and related peri-Gondwana terranes of the circum-north Atlantic. USA:Geol Soc Am,1996: 9-28.
RINO S, KON Y, SATO W, et al. The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 2008, 14: 51-72.
KEPPIE J D, NANCE R D, MURPHY J B, et al. Tethyan, Mediterranean,and Pacific analogues for the Neoproterozoic-Paleozoic birth and development of the peri-Gondwanan terranes and their transfer to Laurentia and Laurussia[J]. Tectonophysics, 2003, 365: 195-219.
ABBO A, AVIGAD D, GERDES A, et al. Cadomian basement and Paleozoicto Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): paleogeographic constraints from U-Pb-Hf in zircons[J]. Lithos, 2015, 227: 122-139.
LINNEMANN U, GERDES A, HOFMANN M, et al. The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany)[J]. Precambrian Research, 2014, 244: 236-278.
GÜRSU S. A new petrogenetic model for meta-granitic rocks in the central and southern Menderes Massif,W Turkey: Implications for Cadomian crustal evolution within the Pan-African mega-cycle [J]. Precambrian Research, 2016, 275: 450-470.
MALEK-MAHMOUDI F, DAVOUDIAN A R, SHABANIAN N, et al. Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: Geodynamic implications for the Pan-African basement in Iran[J]. Precambrian Research, 2017, 293: 56-72.
LEELANANDAM C, BURKE K, ASHWAL L D, et al. Proterozoic mountain building in Peninsular India: An analysis based primarily on alkaline rock distribution[J]. Geological Magazine, 2006, 143: 195-212.
MILLER C, THÖNI M, FRANK W, et al. The early Paleozoic magmatic event in the Northwest Himalaya, India: Source,tectonic setting,and age of emplacement[J]. Geological Magazine,2001,138(3): 237-251.
李才,吴彦旺,王明,等. 青藏高原泛非-早古生代造山事件研究重大进展——冈底斯地区寒武系和泛非造山不整合的发现[J]. 地质通报,2010, 29(12): 1733-1736.
MYROW P M, CHEN J T, SNYDER Z, et al. Depositional history, tectonics, and provenance of the Cambrian-Ordovician boundary interval in the western margin of the North China block[J].GSA Bulletin,2015,127:1174-1193.
MARUYAMA S. Plume tectonics[J]. Geological Society of Japan, 1994, 100: 24-49.
PETTERSSON C H, TEBENKOV A M, LARIONOV A N, et al. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway: Implications for regional correlations in the Arctic Caledonides[J]. Journal of the Geological Society of London, 2009, 166: 147-158.
LI Z X, MITCHELL R N, SPENCERC J, et al. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 2019, 323: 1-5.
MURPHY J B, NANCE R D. Do supercontinents introvert or extrovert?Sm-Nd isotope evidence[J].Geology,2003,31: 873-876.
CONDIE K C, BEYER E, BELOUSOVA E, et al. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust[J]. Precambrian Research, 2005, 139: 42-100.
VEEVERS J J, WALTER M R, SCHEIBNER E.Neoproterozoic tectonics of Australia-Antarctica and Laurentia and the 560 Ma birth of the Pacific Ocean reflect 400 m.y. Pangean supercycle[J]. Journal of Geology, 1997, 105: 225-242.
REES M N, ROWELL A J, COLE E D. Aspects of the late Proterozoic and Paleozoic geology of the Churchill Mountains, southern Victoria Land[J]. Antarctic J of the United States, 1989, 23: 23-25.
ROWELL A J, REES M N, DUEBENDORFER E M, et al. An active Neoproterozoic margin: Evidence from the Skelton Glacier area, Transantarctic Mountains[J].Journal of the Geological Society of London,1993, 150: 677-682.
KOMINZ M. Thermally subsiding basins and the insulating effect of sediment with application to the Cambro-Ordovician Great Basin sequence, western USA[J]. Basin Research, 1995, 7(3): 221-233.
LINDSAY J F, KORSCH R J, WILFORD J R. Timing the breakup of a Proterozoic supercontinent:Evidence from Australian intracratonic basins[J].Geology,1987,15:1061-1064.
von der BORCH C C. Evolution of late Proterozoic to early Palaeozoic Adelaide Foldbelt, Australia: Comparisons with post-Permian rifts and passive margins[J]. Tectonophysics, 1980, 70: 115-134.
FLÖTTMANN T, HAINES P, JAMES P, et al. The tectonic setting and internal structure of the Cambrian Kanmantoo Basin, southeast Australia[J]. Geol Soc Australia Abs, 1996, 41: 144.
FODEN J. Provenance of Neoproterozoic and Early Paleozoic sediments east Australia: Implications from Nd isotope and zircon studies[J].Geol Soc Australia Abs, 1996, 41:146.
MOORES E M. Southwest U.S.—East Antarctic (SWEAT) connection: A hypothesis[J]. Geology, 1991, 19: 425-428.
DALZIEL I W D. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent[J].Geology,1991, 19: 598-601.
SHERGOLD J H, JAGO J, COOPER R, et al. The Cambrian System in Australia, Antarctica, and New Zealand[C]// Int Union Geol Sci, Pub 19, 1985.
ERNST R E, WINGATE W T D, BUCHAN K L, et al. Global record of 1600-700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the pro-posed Nuna (Columbia) and Rodinia supercontinents[J].Precambrian Research,2008,160: 159-178.
YAKUBCHUK A. Evolution of the Central Asian Orogenic Supercollage since Late Neoproterozoic revised again[J]. Gondwana Research, 2017, 47: 372-398.
RIVERS T. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province—Implications for the evolution of large hot long-duration orogens[J].Precambrian Research,2008, 167: 237-259.
HORTON Jr J W, DRAKE Jr A A, RANKIN D W, et al. Preliminary tectonostratigraphic terrane map of the Central and Southern Appalachians—1∶2000000[Z]. US Geological Survey, 1991.
GARÇON M. Episodic growth of felsic continents in the past 3.7 Ga[J]. Science Advances,2021, 7(39): 1-11.
KRÖNER A, KOVACH V, ALEXEIEV D, et al. No excessive crustal growth in the Central Asian Orogenic Belt: Further evidence from field relationships and isotopic data[J]. Gondwana Research, 2017, 50: 135-166.
JANOUŠEK V, JIANG Y D, BURIÁNEK D, et al. Cambrian-Ordovician magmatism of the Ikh-Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south-central Mongolia)[J]. Gondwana Research, 2018, 54: 122-149.
TENG X, ZHANG J X, MAO X H, et al. The earliest Cambrian UHT metamorphism in the Qaidam block, western China: A record of the final assembly of Greater Gondwana?[J]. Gondwana Research, 2020, 87: 118-137.
邓晋福,冯艳芳,狄永军,等.古亚洲构造域侵入岩时空演化框架[J].地质论评,2015, 61(6): 1211-1224.
KHAIN E V, BIBIKOVA E V, KRÖNER A, et al. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, eastern Sayan, Siberia, and geodynamic implications[J]. Earth and Planetary Science Letters, 2002, 199: 311-325.
MARUYAMA S, LIOU J G, TERABAYASHI M. Blueschists and eclogites of the world and their exhumation[J]. International Geology Review, 1996, 38: 485-594.
STERN R J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time[J].Geology,2005,33(7): 557-560.
DUAN L, MENG Q R, ZHANG C L, et al. Tracing the position of the South China block in Gondwana: U-Pb ages and Hf isotopes of Devonian detrital zircons[J].Gondwana Research,2011,19:141-149.
蔡志慧,许志琴,段向东,等.青藏高原东南缘滇西早古生代早期造山事件[J].岩石学报,2013, 29(6): 2123-2140.
CONDIE K C, ASTER R C. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth[J]. Precambrian Research, 2010, 180: 227-236.
万天丰. 中国大陆早古生代构造演化[J]. 地学前缘,2006, 13(6): 30-42.
FYFE W S, LEONARDOS O H. Ancient metamorphic-migmatite belts of the Brazilian African coasts[J]. Nature, 1973, 224: 501-502.
ZHANG N, DANG Z, HUANG C, et al.The dominant driving force for supercontinent breakup: Plume push or subduction retreat?[J]. Geoscience Frontiers,2018,9(4): 997-1007.
FITZSIMONS I C W. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens[J].Geology,2000,28: 879-882.
TALARICO F, CASTELLI D.Relict granulites in the Ross orogen of northern Victoria Land(Antarctica)I: Field occurrence, petrography and metamorphic evolution[J]. Precambrian Research,1995,75: 141-156.
CAWOOD P A,JOHNSON M R W,NEMCHIN A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255: 70-84.
任留东,李崇,王彦斌,等. 豫西秦岭杂岩变质带的分布及主期变质时代的限定[J]. 岩石学报,2016,32(7): 1934-1948.
GOODGE J W. Metamorphism in the Ross orogen and its bearing on Gondwana margin tectonics[J]. GSA Special Papers, 2007,419: 185-203.
BRADSHAW J D, VAUGHAN A P M, MILLAR I L, et al.Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula:Sedimentology,geochronology and isotope evidence for provenance and tectonic setting in Gondwana[J].Geological Magazine,2012,149(4): 626-644.
RILEY T R, FLOWERDEW M J,WHITEHOUSE M J. U-Pb ion-microprobe zircon geochronology from the basement inliers of eastern Graham Land, Antarctic Peninsula[J]. Journal of the Geological Society, 2012, 169: 381-393.
高利娥, 曾令森, 许志琴, 等. 喜马拉雅造山带加里东期构造作用: 以马拉山-吉隆构造带为例[J]. 岩石学报, 2015, 31(5):1200-1218.
郑艺龙,王根厚,郭志文,等. 藏北羌塘泛非和印支事件的记录:来自俄久卖变质杂岩地球化学与锆石 U-Pb 年代学的证据[J]. 岩石学报,2015, 31(4):1137-1152.
HU P Y, ZHAI Q G, JAHN B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J].Lithos,2015,220/221/222/223: 318-338.
WANG X X, ZHANG J J, SANTOSH M, et al. Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 2012, 154: 248-262.
李三忠,杨朝,赵淑娟,等. 全球早古生代造山带(Ⅰ): 碰撞型造山[J].吉林大学学报(地球科学版), 2016,46(4): 945-967.
李三忠,杨朝,赵淑娟,等. 全球早古生代造山带(Ⅱ):俯冲-增生型造山[J].吉林大学学报(地球科学版),2016,46(4): 968-1004.
李三忠,赵淑娟,余珊,等.东亚原特提斯洋(Ⅱ): 早古生代微陆块亲缘性与聚合[J]. 岩石学报,2016,32(9): 2628-2644.
LIU S, HU R Z, GAO S, et al. U-Pb Zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36(2/3):168-182.
LIN Y L, YEH M W, LEE T Y, et al. First evidence of the Cambrian basement in Upper Peninsula of Thailand and its implication for crustal and tectonic evolution of the Sibumasu terrane[J]. Gondwana Research, 2013, 24: 1031-1037.
HU P Y, ZHAI Q G, ZHAO G C, et al. Cambrian and Cryogenian tectonothermal events in the Amdo microcontinent, Central Tibet: Implications for paleogeographic reconstruction and tectonic evolution of northern Gondwana[J].Palaeogeography,Palaeoclimatology,Palaeoecology, 2021, 569: 110332.
解超明,李才,苏犁,等. 藏北聂荣微陆块泛非-早古生代构造热事件:年代学与地球化学制约[J]. 中国科学:地球科学,2014, 44(3): 414-428.
解超明,李才,王明,等. 藏北聂荣微陆块的构造亲缘性—来自LA-ICP-MS锆石U-Pb年龄及Hf同位素的制约[J]. 地质通报,2014,33(11):1778-1792.
解超明,李才,苏犁,等.青藏高原安多高压麻粒岩同位素年代学研究[J].岩石学报,2013, 29(3) : 912-922.
何世平,李荣社,王超,等. 昌都地块宁多岩群形成时代研究: 北羌塘基底存在的证据[J]. 地学前缘, 2013, 20(5): 15-24.
彭智敏,耿全如,王立全,等.青藏高原羌塘中部本松错花岗质片麻岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].科学通报,2014,59(26):2621-2629.
谭富文,王剑,付修根, 等.藏北羌塘盆地基底变质岩的锆石SHRIMP年龄及其地质意义[J]. 岩石学报,2009, 25(1): 139-146.
张泽明,王金丽,沈昆,等. 环东冈瓦纳大陆周缘的古生代造山作用:东喜马拉雅构造结南迦巴瓦岩群的岩石学和年代学证据[J]. 岩石学报,2008,27(7): 1627-1637.
苟正彬,张泽明,董昕,等. 藏南亚东地区早古生代花岗质片麻岩的成因与构造意义[J]. 岩石学报,2015,31(12) : 3674-3686.
CHAPPELL B W, WHITE A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh,1992, 83(1/2): 1-26.
KEMP A I S,HAWKESWORTH C J,COLLINS W J,et al.Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 2009, 284(3/4): 455-466.
DECELLES P G, GEHRELSG E, QUADE J, et al. Tectonic implications of U‐Pb zircon ages of the Himalayan orogenic belt in Nepal[J]. Science, 2000, 288: 497-499.
CANDAN O, KORALAY O E, AKAL C, et al. Supra-Pan-African unconformity between core and cover series of the Menderes Massif, Turkey and its geological implications[J]. Precambrian Research, 2011, 184: 1-23.
POGUE K R, HYLLAND M D, YEATS R S, et al. Structural framework of the Himalayan foothills, northern Pakistan[J].GSA Special Papers,1999, 328: 259-274.
GÜRSU S,MÖLLER A,GÖNCÜOGLU M C, et al. Neoproterozoic continental arc volcanism at the northern edge of the Arabian Plate, SE Turkey [J].Precambrian Research, 2015, 258: 208-233.
BAIG M S, LAWRENCE R D, SNEE L W. Evidence for late Precambrian to early Cambrian orogeny in northwest Himalaya, Pakistan[J]. Geological Magazine,1988,125: 83-86.
GANSSER A. Geology of the Himalayas[M]. New York: Interscience Pubs,1964.
VALDIA K S, GUPTA V J. A contribution to the geology of northeastern Kuman with special reference to the Hercynian gap in Tethys Himalayan[J]. Himalayan Geology, 1972, 2: 1-33.
McQUARRIE N, LONG S P, TOBGAY T, et al. Documenting basin scale, geometry and provenance through detrital geochemical data: Lessons from the Neoproterozoic to Ordovician Lesser, Greater, and Tethyan Himalayan strata of Bhutan[J]. Gondwana Research, 2013, 23:1491-1510.
肖文交, 敖松坚, 杨磊, 等.喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局[J]. 中国科学: 地球科学, 2017, 47: 631-656.
GEHRELS G, KAPP P, DECELLES P, et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics, 2011, 30(5):TC5016.
计文化, 陈守建, 赵振明, 等. 冈底斯构造带申扎一带寒武纪火山岩的发现及其地质意义[J]. 地质通报, 2009, 28(9): 1350-1354.
HU P Y, LI C, WANG M, et al. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin[J]. Journal of Asian Earth Science, 2013, 77: 91-107.
ZHU D C, ZHAO Z D, NIU Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet: Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328(18): 290-308.
董春艳,李才,万渝生,等. 西藏羌塘龙木错-双湖缝合带南侧奥陶纪温泉石英岩碎屑锆石年龄分布模式: 构造归属及物源区制约[J]. 中国科学:地球科学,2011, 41(3): 299-308.
解超明, 李才, 翟庆国, 等.藏北羌塘早古生代岩浆作用及其地质意义[J]. 沉积与特提斯地质,2021,41(2): 340-350.
WANG M,LI C,FAN J J.Geochronology and geochemistry of the Dabure basalts,central Qiangtang,Tibet:Evidence for ~550 Ma rifting of Gondwana[J].International Geology Review,2015,57:1791-1805.
LIU Y M, LI S Z, SANTOSH M, et al. The passive margin of northern Gondwana during Early Paleozoic: Evidence from the central Tibet Plateau[J]. Gondwana Research, 2020, 78: 126-140.
杨学俊,贾小川,熊昌利,等. 滇西高黎贡山南段公养河群变质基性火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J].地质通报,2012, 31(2/3): 264-276.
李才,程立人,张以春,等. 西藏羌塘南部发现奥陶纪-泥盆纪地层[J]. 地质通报,2004, 23(5/6): 602-604.
黄勇,郝家栩,白龙,等.滇西施甸地区晚泛非运动的地层学和岩石学响应[J].地质通报,2012,31(2/3): 306-313.
胡培远, 李才, 吴彦旺, 等.龙木错-双湖-澜沧江洋的打开时限: 来自斜长花岗岩的制约[J]. 科学通报, 2014,59(20): 1992-2003.
吴彦旺. 龙木错-双湖-澜沧江洋历史记录——寒武纪-二叠纪的蛇绿岩[D].长春:吉林大学, 2013.
杨耀,赵中宝,苑婷媛,等. 藏北羌塘奥陶纪平行不整合面的厘定及其构造意义[J]. 岩石学报, 2014,30(8): 2381-2392.
夏军,王陆太,钟华明,等.青藏高原龙木错地区志留纪大型古三角洲沉积体系的识别及其意义[J].地质通报,2009,28(9):1267-1275.
陈能松,王勤燕,陈强,等. 柴达木和欧龙布鲁克陆块基底的组成和变质作用及中国中西部古大陆演化关系初探[J]. 地学前缘,2007, 14(1): 43-55.
王超,李猛,李荣社,等. 青海柴达木盆地北缘全吉群内部存在区域性不整合[J]. 地质通报,2015, 34(2/3): 364-373.
陈能松,孙敏,王勤燕,等. 东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J].中国科学: 地球科学,2008, 38(6): 657-666.
陈强,陈能松,王勤燕, 等.秦岭造山带秦岭岩群独居石电子探针化学年龄:晚泛非期变质证据? [J]. 科学通报, 2006, 51 (21): 2512-2516.
李怀坤,陆松年,相振群,等. 东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb 年代学研究[J]. 地学前缘,2006, 13(6):311-321.
张建新, 路增龙, 毛小红, 等. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源[J]. 岩石学报, 2021, 37(1): 74-94.
陆松年, 于海峰, 赵凤清, 等.青藏高原北部前寒武纪地质初探[M]. 北京: 地质出版社, 2002.
邬光辉,李浩武,徐彦龙,等. 塔里木克拉通基底古隆起构造-热事件及其结构与演化[J]. 岩石学报,2012,28(8): 2435-2452.
陈能松,李晓彦,王新宇,等. 柴南缘昆北单元变质新元古代花岗岩的锆石SHRIMP U-Pb 年龄[J]. 地质通报, 2006, 25(11): 33-36.
史仁灯,杨经绥,吴才来.柴北缘早古生代岛弧火山岩中埃达克质英安岩的发现及其地质意义[J].岩石矿物学杂志,2003, 22(3):229-236.
朱小辉,陈丹玲,王超,等. 柴达木盆地北缘新元古代-早古生代大洋的形成、发展和消亡[J]. 地质学报,2015, 89(2): 234-251.
徐学义, 何世平, 王洪亮, 等. 早古生代北秦岭-北祁连结合部构造格局的地层及构造岩浆事件约束[J]. 西北地质,2008, 41(1): 1-21.
刘永江,NeubauerFranz,李伟民,等. 柴北缘-南祁连地区构造热事件[J].吉林大学学报(地球科学版),2012, 42(5): 1317-1329.
林尚康,汤好书,任涛. 西昆仑赞坎铁矿区英安班岩锆石U-Pb 年代学研究[J]. 河南科学, 2015, 33(6): 986-992.
乔耿彪,王萍,伍跃中,等. 西昆仑塔什库尔干陆块赞坎铁矿赋矿地层形成时代及其地质意义[J]. 中国地质, 2015, 42(3): 616-630.
LIU X Q, ZHANG C L, YE X T, et al. Cambrian mafic and granitic intrusions in the Mazar-Tianshuihai terrane, West Kunlun Orogenic Belt: Constraints on the subduction orientation of the Proto-Tethys Ocean[J]. Lithos, 2019, 350/351: 105226.
YAN Z, AITCHISON J, FU C L, et al. Hualong Complex, South Qilian terrane: U-Pb and Lu-Hf constraints on Neoproterozoic micro-continental fragments accreted to the northern Proto-Tethyan margin[J]. Precambrian Research, 2015, 266: 65-85.
李金平,张建新,于胜尧,等. 北祁连榴辉岩相变沉积岩的特征及其构造意义[J]. 地质学报,2009,83(11): 1667-1686.
裴先治,李佐臣,李瑞保,等.祁连造山带东段早古生代葫芦河群变质碎屑岩中碎屑锆石 LA-ICP-MS U-Pb年龄:源区特征和沉积时代的限定[J]. 地学前缘,2012,19(5): 205-224.
陆松年,于海峰,李怀坤,等. 中央造山带(中-西部)前寒武纪地质[M]. 北京:地质出版社,2009.
LI C, REN L D, ZONG S, et al. Confirmation of the Major Grenville Event in the Qinling Complex of the Qinling Orogenic Belt, Central China[J]. Journal of Earth Science, 2019, 30(3): 494-509.
ZHANG H F, YU H, ZHOU D W, et al. The meta-gabbroic complex of Fushui in north Qinling orogen: A case of syn-subduction mafic magmatism[J]. Gondwana Research, 2015, 28: 262-275.
耿元生,周喜文. 阿拉善地区新元古代早期花岗岩的地球化学和锆石Hf同位素特征[J]. 岩石学报, 2011, 27(4): 897-908.
宫江华, 张建新, 于胜尧.阿拉善地块南缘龙首山东段“龙首山岩群”的再厘定——来自碎屑锆石U-Pb定年的证据[J]. 岩石矿物学杂志, 2013, 32(1): 1-22.
张进, 李锦轶, 刘建峰, 等. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息等[J]. 岩石学报, 2012, 28(9): 2912-2934.
WILDE S A, WU F Y, ZHANG X Z. Late Pan-African magmatism in northeastern China: SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J].Precambrian Research,2003,122: 311-327.
WILDE S A, WU F Y, ZHAO G C. The Khanka Block, NE China, and its significance to the evolution of the Central Asian Orogenic Belt and continental accretion[J].Special Publications of the Geological Society of London, 2010, 338: 117-137.
YANG H, XU W L, SOROKIN A A, et al. Geochronology and geochemistry of Neoproterozoic magmatism in the Bureya Block, Russian Far East: Petrogenesis and implications for Rodinia reconstruction[J]. Precambrian Research, 2020, 342: 105676.
周建波, 张兴洲, 郑常青.中国东北~500 Ma泛非期孔兹岩带的确定及其意义[J]. 岩石学报,2011,27(4): 1235-1245.
TSUTSUMI Y, YOKOYAMA K, KASATKIN S A, et al. Zircon U-Pb age of Far East Russia[J].J Mineral Petrol Sci, 2014, 109: 97-102.
KHANCHUK A I, VOVNA G M, KISELEV V I, et al. First results of zircon LA-ICP-MS U-Pb dating of the rocks from the granulite complex of Khanka massif in the Primorye region[J]. Doklady Earth Sciences,2010, 434: 1164-1167.
任纪舜,姜春发,张正坤,等. 中国大地构造及其演化[M]. 北京:科学出版社, 1980.
KOJIMA S. Mesozoic terrane accretion in northeast China, Sikhote-Alin and Japan regions[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 1989, 69:213-232.
SCHEKA S A, VRZHOSEK A A (石渡明, 张哲,编译. 俄罗斯远东滨海区寒武纪兴凯蛇绿岩[J]. 地质与资源,2004, 13(3): 189-191.
MILANOVSKY E E(陈正,译.俄罗斯及其毗邻地区地质[M]. 北京:地质出版社,2010.
赵海滨,莫宣学,徐受民,等. 黑龙江新开岭变质核杂岩的组成及其演化[J]. 地质科学,2007, 42 (1): 176-188.
王成文,孙跃武,李宁,等. 中国东北及邻区晚古生代地层分布规律的大地构造意义[J]. 中国科学:地球科学,2009, 52(5): 619-626.
刘崴国,张建东,班建永,等. 西天山那拉提岩群SHRIMP锆石U-Pb年龄及地质意义[J]. 新疆地质,2016, 34(2): 157-163.
钱青, 徐守礼, 何国琦, 等. 那拉提山北缘寒武纪玄武岩的元素地球化学特征及构造意义[J]. 岩石学报, 2007,23(7): 1708-1720.
CHEN C H, LIU Y H, LEE C Y, et al. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex(Yunkai massif), South China: Emphasis on the in-situ EMP monazite dating[J]. Lithos, 2012,144/145: 109-129.
LI X H, LI Z X, LI W X, et al. Detrital zircon U-Pb age and Hf isotope constrains on the generation and reworking of Precambrian continental crust in the Cathaysia Block,South China: A synthesis[J]. Gondwana Research, 2014, 25: 1202-1215.
姜杨,赵希林,李龙明,等. 闽中南平-宁化构造带南华纪陆缘弧岩浆活动:对武夷造山带构造演化的新启示[J]. 中国地质,2020,47(4):1010-1024.
于涛,王宗起,马昌前, 等. 浙西北地区寒武系物源分析及古地理意义:来自沉积学及碎屑锆石年代学的证据[J].地质学报, 2021, 95(11): 3266-3281.
LI L M, LIN S F, XING G F, et al. First direct evidence of Pan-African Orogeny associated with Gondwana assembly in the Cathaysia Block of Southern China[J]. Sci Rep,2017,7(1):794.
STERN R J. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history[J]. Gondwana Research, 2008, 14: 33-50.
TORSVIK T H. The Rodinia jigsaw puzzle[J]. Science, 2003, 300: 1379-1381.
MALLARD L D, ROGERS J J W. Relationship of Avalonian and Cadomian terranes to Grenville and Pan-African events[J]. Journal of Geodynamics, 1997, 23: 197-221.
任留东,王彦斌,杨崇辉,等. 麻山杂岩的两种变质作用及其与花岗岩的关系[J]. 岩石学报,2012,28(9): 2855-2865.
ZHOU J B, WILDE A S, ZHAO G, et al. Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: Further evidence regarding their affinity[J]. Geological Magazine, 2010, 147(5): 737-749.
DIDENKO A N, MOSSAKOVSKY A A, PECHERSKY D M, et al. Geodynamic of Palaeozoic oceans of central Asia[J]. Geol Geophys, 1994, 35: 59-75 (in Russian).
XIA L Q, XIA Z C, XU X Y, et al. Mid-late Neoproterozoic rift-related volcanic rocks in China: Geological records of rifting and break-up of Rodinia[J]. Geoscience Frontiers, 2012, 3(4): 375-399.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构