图1 S-As耦合的生物地球化学过程
纸质出版日期:2022-11-25,
网络出版日期:2022-05-26,
收稿日期:2021-12-22,
录用日期:2022-03-18
扫 描 看 全 文
引用本文
阅读全文PDF
矿区地下水As污染导致严重的环境与健康问题。矿区地下水As释放与迁移转化过程中,硫的生物地球化学循环起关键作用,包括一系列S-As复杂的生物化学反应。硫循环对As污染的影响机制尚不清楚,限制了As污染控制技术的研发与应用。因此,厘清生化硫循环对矿区地下水As污染形成与As形态转化的影响是控制矿区地下水As污染的关键。本文综述了硫的还原、氧化以及歧化等多个硫转化过程组成的硫循环机制及其对矿区地下水As污染形成与As形态转化中的影响。结果表明,硫还原过程对矿区地下水As污染的形成与转化作用具有两面性,既可导致As释放,亦可使As固定;硫氧化过程可把As(Ⅲ)转化为As(Ⅴ)从而被吸附固定,同时可介导As还原使As毒性及可移动性增强;此外,自养的硫歧化过程可改变矿区地下水中S的价态和形态,进而对As的迁移转化产生显著影响。本文对S-As耦合循环对矿区地下水As污染控制的意义与发展前景进行了展望,提出在矿区地下水As污染的形成、转化与控制研究中,应首先明晰地下水硫生物地球化学循环网络并探明其对As形态转化的影响,进而构建S-As耦合转化数学模型,以助于研发更有效的矿区地下水As污染控制技术。本综述有助于增进对矿区地下水As污染形成及As形态转化机制的认识,为矿区地下水As污染有效控制提供可行技术支撑。
Arsenic pollution of groundwater in the mining areas leads to serious problems in environmental impact and human health. The biogeochemical cycle of sulfur plays a critical role in the release, migration, and transformation of arsenic in groundwater in the mining areas. Notably, arsenic and sulfur undergo similar chemical and biological redox reactions, and their biogeochemical cycles are often interconnected, making it difficult to clarify the influence of the sulfur cycle on the transformation of arsenic. Accordingly, clarifying the impact mechanism of the biochemical sulfur cycle on the formation and conversion of arsenic is the core to controlling the arsenic pollution in groundwater in mining areas. This article reviews the roles of various biochemical sulfur processes including sulfate reduction, sulfide oxidation, and sulfur disproportionation in the arsenic formation and transformation. It is demonstrated that the dissimilatory sulfate reduction process plays a dual role in the formation and conversion of arsenic in groundwater in mining areas. The sulfur oxidation process has the potential to immobilize arsenic by using free or arsenic-bound sulfur as an electron donor to directly or indirectly transform arsenic and thioarsenat to arsenate, or reduce arsenate. Furthermore, as an important biogeochemical sulfur processes, sulfur disproportionation may also involve in the migration and transformation of arsenic in groundwater. In brief, transformations involving sulfur significantly impact the fate of environmental arsenic. The current status and prospect of the S-As coupling cycle on the arsenic pollution control of groundwater in mining areas were also discussed. Firstly, the reaction conditions of the sulfur biochemical reaction process should be investigated and the mechanism of arsenic transformation during the biogeochemical cycle of sulfur should be developed. Secondly, the sulfur-arsenic coupling transformation biogeochemical model should be constructed by integrating the reaction kinetic model of the sulfur biogeochemical cycle and the arsenic-sulfur hydrochemical model. Finally, the mechanism of arsenic transformation in groundwater should be elucidated to develop the controlling strategies for arsenic pollution. The findings will improve the understanding of arsenic pollution in mining area, and provide scientific advice for arsenic-contaminated mining groundwater treatment.
As和无机砷化合物被列入一类致癌物清单和第一批有毒有害水污染物名录[
矿区地下水As污染情况更为严重。在自然界中,As大多以硫化物的形式伴生于Cu、Pb、Zn、Sn、Ni、Au与Co矿中[
矿区地下水的As在迁移转化过程中与其他化学物质如S、Fe等发生相互作用,会导致As的形态、价态与可移动性发生改变。其中,硫的生物地球化学过程起到关键作用。在富铁的矿区地下水环境中,施氏矿物(羟基硫酸高铁)对As有很强的吸附能力,可固定地下水中的As[
因此,硫的生物地球化学循环深度参与到地下水As污染的形成与转化过程中并形成一个极其复杂的反应体系,但其对地下水As污染形成与转化的影响机制尚未得到系统性的阐释与讨论。本文将对生化硫循环在地下水As污染形成与转化中的作用及S-As耦合循环对矿区地下水As污染控制的研究进展与发展趋势进行综述和展望。
矿区地下水As污染的形成机制是科学家们重点研究的科学问题。地下水中的As污染的来源可分自然源及人为源。其中,人为源造成的As污染主要是工农业生产过程产生的直接或间接的As污染。在矿区,则主要是含砷矿物的开采、冶炼及尾矿堆放等过程形成含As废水进入到地下水环境,导致地下水As污染。而自然源主要指固相中的As通过风化、还原溶解、解吸等As的地球化学循环过程释放放到地下水中。在矿区,含砷矿物开采、冶炼及尾矿堆放等人为源导致的As释放被认为是地下水As污染的主要原因,该过程往往伴随着氧化-还原环境交替、体系pH值升高等水文地质特征。
As是地壳中丰富的元素之一,存在于300多种硫铁矿物中,并与Au、Sn、Sb等多种有色金属矿伴生[
自然源是地下水As污染的重要来源之一。含砷矿物特别是含砷黄铁矿的还原溶解使沉积物中吸附态As转化为游离态,从而释放到地下水环境中[
硫的生物地球化学循环过程与As形态、价态的转化密切相关[
此外,碳的生物地球化学循环亦参与到地下水As的迁移转化过程中,首先,有机碳可促进硫-铁还原微生物的活性,使得含As、Fe矿物还原溶解,导致As释放到地下水中[
本文将重点综述硫的生物地球化学循环及其对矿区地下水As污染形成与As形态转化的影响。
自然界中存在丰富的硫源,硫元素化学性质活泼,化合价从-2 ~ +6价不等[
硫的生物地球化学循环深度参与到矿区地下水As污染的形成与转化过程中,对As的形态与价态产生显著影响,S-As耦合循环机制见
图1 S-As耦合的生物地球化学过程
Fig.1 S-As coupling biogeochemical process
① 硫酸盐还原过程;② 单质硫还原过程;③ 硫歧化过程;④ 硫氧化过程;⑤ 含砷矿物溶解过程;⑥ 砷还原过程;⑦~12 砷的硫代及去硫代过程;13~14 砷硫矿物沉淀及再溶解过程。Thio-As(Ⅲ) 和Thio-As(Ⅴ)分别指硫代亚砷酸盐和硫代砷酸盐;As(s)指含砷矿物;SRB指硫酸盐还原菌;S0RB指单质硫还原菌;SOB指硫氧化菌;SDB指硫歧化菌。
过 程 | 化学方程式 |
---|---|
① | SO2-4+2(CH2O)+2H+→H2S+2CO2+2H2O |
② | S0+12(CH2O)+12H2O→H2S+12CO2 |
③ | 4S0+4H2O→SO2-4+3HS-+5H+ |
④ | 2HS-+O2+2H+→2S0+2H2O |
HS-+2O2→SO2-4+2H+ | |
⑤ | MxAsO4(OH)y·nH2O+(y+1)H+⇌Mx3++HAsO2-4+(n+y)H2O |
FeAsS+34SO2-4+H2O+52H+→Fe3++HAsO2-4+74H2S | |
⑥ | HAsO2-4+2H++HS-⇌H2AsO-3+S0 |
⑦~12 | HiAsSjOi-34-j+HS-⇌HiAsSj+1Oi-33-j+OH- (i,j∈[0,3]) |
H2AsO-3+S0→HAsSO2-3+H+ | |
HiAsSjOi-33-j+S0→Hi-1AsSj+1Oi-43-j+H+ (i,j∈[1,3]) | |
HAsSO2-3+H+→H2AsO-3+S0 | |
HiAsSjOi-34-j+H+→Hi+1AsSj-1Oi-24-j+S0 (i∈[0,3], j∈[2,4]) | |
13~14 | As(OH)03+32H2S→12As2S3+3H2O |
12As2S3+3H2O→As(OH)03+32H2S | |
12As2S3+12H2S⇌13H2As3S-6+13H+ | |
12As2S3+H2O+12H2S⇌H2AsS2O-+H++32H2S | |
13H2As3S-6+HS-+13H+⇌H2AsS2O- | |
HiAsSjOi-33-j+HS-⇌HiAsSj+1Oi-32-j+OH- (i∈[1,3], j∈[0,2]) |
1) S0表示活性0价硫,包括活化的单质硫和多硫化物的活性0价硫(HS-n⇌S0+HS-n-1 (n≥2)。
硫还原过程一般由硫还原菌驱动进行。硫还原菌不是一个分类学单元,而是对具有相同功能的微生物类群的总称,一般指在缺氧或厌氧条件下,以有机化合物(化能异养型)或无机化合物(化能自养型)为电子供体,把硫酸盐、亚硫酸盐、硫代硫酸盐、二甲基亚砜、亚砜、单质硫、聚合硫化物等高价态硫还原成硫化物的原核微生物的类群[
硫还原过程对矿区地下水As污染的形成与转化具有两面性。在实地研究中发现,As污染区域地下水硫酸盐还原活动与水中As浓度上升高度耦合,主要原因是SRB驱动的硫酸盐还原反应催化含砷矿物的还原溶解,导致含砷矿物、土壤及地下水沉积物中的As从固相释放到水相中(
图2 硫还原及硫氧化过程驱动地下水As迁移转化
Fig.2 The migration and transformation of arsenic driven by sulfate reduction and sulfur oxidation in groundwater
① 硫还原驱动含砷铁矿物还原溶解;② 硫氧化驱动含砷铁矿物溶解;③ 硫氧化耦合砷还原过程
硫氧化过程指硫化物被氧化为氧化态硫(单质硫或者硫酸盐等)的过程,根据是否有微生物参与可分为生物硫氧化或非生物硫氧化两种。生物硫氧化由硫氧化菌(SOB,sulfur oxidizing bacteria)驱动,是一种古老的代谢方式[
硫氧化过程与矿区地下水As污染的形成与转化过程深度耦合。一方面,在氧化还原电位较高的环境中,含硫矿物氧化溶解导致的As释放是地下水As的主要来源[
As的硫代与脱硫过程是地下水中As迁移转化的核心机制,也是近年来地下水As污染研究的热点[
硫的生物地球化学过程产生的S0、HS-和Sn2-是硫代砷形成的重要前驱体[
单质硫歧化是处于中间氧化状态的单质硫在没有外部电子供体和受体的情况下转化为硫化物和硫酸盐。越来越多的证据表明,硫歧化菌(SDB,sulfur-disproportionating bacteria)驱动的S0歧化是硫循环中一个重要的、古老的、生态相关的过程,是地球上最古老的代谢途径之一[
在贫营养的矿区地下水环境中,需要有机碳驱动的硫酸盐还原过程可能被抑制,但硫歧化产生的HS-在地下水缺氧及碱性条件下与S0反应生成多硫化物(Sn2-),降低了硫歧化反应产物HS-的浓度,使得硫歧化反应在热力学上可自发进行[
图3 硫歧化过程驱动地下水As迁移转化
Fig.3 The migration and transformation of arsenic driven by sulfur disproportionation in groundwater
① S歧化过程; ② As释放过程; ③ As还原过程
综上,硫的生物地球化学循环深度参与矿区地下水As污染的形成与转化过程中,对As的形态与价态产生显著影响。因此,为有效控制地下水As污染的形成,保障饮用水安全,厘清S-As耦合循环在地下水As污染形成与转化中的作用尤为重要。
目前,基于SRB的As污染控制技术已经在实验室中被广泛研究。早在1995年,Rittle等发现As可以在硫酸盐还原过程中沉淀[
与此同时,基于SRB的As污染控制技术也已经应用于含As地下水原位修复中。例如,Ludwig等基于零价铁的可渗透反应墙技术通过把SRB包埋在堆肥中,实现地下水As的质量浓度由206 mg/L降低到0.01 mg/L[
图4 基于SRB的含As地下水原位修复技术[
Fig.4 In-situ SRB-based process for arsenic-containing groundwater remediation[
由上述可知,厘清并操纵S-As耦合转化是控制地下水As污染的关键。但目前对于地下水As污染控制的研究主要集中在硫还原过程,缺乏对硫氧化、硫歧化等其他硫循环过程的综合考虑。探索矿区地下水中硫的生物地球化学循环,可为矿区地下水As污染形成与As形态转化过程提供更清晰完整的信息和更科学合理的解释,拓展对地下水As污染这一重要环境问题的科学认识。再者,目前的地下水As污染控制技术处理效果迥异,难以获得稳定高效处理的效果,因此难以达到饮用水标准。这主要是因为对S-As反应过程不明确,特别是硫代砷的形成与转化机制不明,并缺乏综合的数学模型作为指导,导致硫源和碳源的投加量难以定量化。在未来研究中,有必要厘清S-As耦合反应,并在把硫的生物地球化学反应动力学纳入模型考虑的基础上构建契合矿区地下水S-As耦合转化的生物地球化学过程数学模型,并用于指导研发适合于矿区地下水的As污染控制技术。因此,本文将对S-As耦合转化对矿区地下水As污染控制的研究前景进行展望。
4.2.1 矿区地下水生化硫循环网络构建
相较于碳和氮代谢,硫循环代谢途径及酶类研究相对较少[
4.2.2 硫循环对矿区地下水中As污染迁移转化的影响机制研究
目前研究较多关注硫酸盐还原过程对As的转化与可移动性的影响。但在矿区贫营养环境中,硫酸盐还原反应可能受到限制,而硫歧化、硫氧化等其他硫生物地球化学过程对As的迁移与转化也有重要影响,但目前关于这方面的研究获得较少关注。硫循环过程的生化反应涉及多种形态(固态和可溶解态)与价态(+6,+4,+2,0,-2)的硫的产生与消耗,进而对As的迁移和转化产生不同作用(如
4.2.3 矿区地下水S-As耦合转化过程的数学模型搭建
数学模型是解析地下水中S-As耦合转化复杂反应体系的必要工具,有助于定量化分析和精准调控S-As耦合转化过程以实现As污染控制。因此,建立S-As数学是研究地下水As污染迁移转化特性的前提条件。然而,目前关于S-As反应的数学模型主要是基于S-As反应热力学及计量学数据所构建的水化学模型,无法系统化描述自然条件下矿区地下水环境中的S-As耦合转化过程。首先,现有模型主要以HS-与As之间反应为基础,而缺乏对其他形态/价态硫物质(如S0、Sn2-等)与As之间反应的考虑,而S0、Sn2-等多种形态/价态的硫深度参与到As转化过程,特别是As的硫代过程中。其次,As硫代反应的动力学过程研究相当缺乏,目前硫代砷相关水化学过程的各种热力学参数还有不小的争议,如不同研究得出的二硫代砷酸盐一级电离常数就有近5个数量级的差异[
4.2.4 矿区地下水As污染协同控制技术研发
矿区含As地下水修复技术总体思路是使As固定化,具体包括吸附固定、成矿固定等多种技术手段[
硫的生物地球化学循环在地下水As释放和迁移转化过程中起关键作用。厘清并调控地下水中硫循环对As转化的影响,是有效控制矿区地下水As污染的必要前提。本文综述了S-As之间复杂的水化学反应,讨论了硫的还原、氧化以及歧化等各个生化硫循环过程在矿区地下水As污染的形成与转化中的作用。在未来的研究中,明晰矿区地下水硫生物地球化学反应机制及其对As转化的影响,构建适合矿区地下水环境的S-As耦合转化的生物地球化学过程数学模型,研发多尺度地下水污染多场耦合模拟预测技术,并据此研发地下水As污染原位多技术协同治理与防控体系,是矿区地下水As污染控制研究的重要发展趋势。
RATNAIKE R N. Acute and chronic arsenic toxicity[J].Postgraduate Medical Journal,2003,79(933):391-396. [百度学术]
LI G, SUN G X, WILLIAMS P N, et al. Inorganic arsenic in Chinese food and its cancer risk[J].Environment International, 2011, 37(7): 1219-1225. [百度学术]
HUGHES M F. Arsenic toxicity and potential mechanisms of action[J].Toxicology Letters,2002,133(1): 1-16. [百度学术]
SMITH A H, LINGAS E O, RAHMAN M. Contamination of drinking-water by arsenic in Bangladesh:A public health emergency[J]. Bulletin of the World Health Organization, 2000, 78: 1093-1103. [百度学术]
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020,368(6493):845-850. [百度学术]
RODRIGUEZ-LADO L, SUN G, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868. [百度学术]
GUO H, WEN D, LIU Z, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41: 196-217. [百度学术]
郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96. [百度学术]
肖细元, 陈同斌, 廖晓勇, 等. 中国主要含砷矿产资源的区域分布与As污染问题 [J]. 地理研究, 2008, 27(1): 201-212. [百度学术]
王萍, 王世亮, 刘少卿, 等. 砷的发生、形态、污染源及地球化学循环[J]. 环境科学与技术, 2010, 33(7): 90-97. [百度学术]
宋波, 刘畅, 陈同斌. 广西土壤和沉积物砷含量及污染分布特征 [J]. 自然资源学报, 2017, 32(4): 654-668. [百度学术]
LIU M, XU X, WANG D, et al. Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective[J]. Journal of Hydrology, 2016, 535: 173-180. [百度学术]
韦磊. 地下水As污染形成机制研究进展 [J]. 低碳世界, 2019, 9(5): 24-25. [百度学术]
缪钟灵. 喀斯特区域地下水污染问题初步探讨 [J]. 中国地质, 1983 (1): 16-19. [百度学术]
LIU C P, LUO C L, GAO Y, et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China[J]. Environmental Pollution, 2010, 158(3): 820-826. [百度学术]
李玲, 张国平, 刘虹, 等. 广西大厂矿区土壤-植物系统中Sb、As的迁移转化特征 [J]. 环境科学学报, 2010, 30(11): 2305-2313. [百度学术]
周永章, 宋书巧, 张澄博, 等. 河流对矿山及矿山开发的水环境地球化学响应——以广西刁江水系为例 [J]. 地质通报, 2005, 24(10/11): 66-70. [百度学术]
BURTON E D, BUSH R T, JOHNSTON S G, et al. Sorption of arsenic(V) and arsenic(Ⅲ) to schwertmannite[J]. Environmental Science & Technology, 2009, 43(24): 9202-9207. [百度学术]
KUMAR N, COUTURE R M, MILLOT R, et al. Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier[J]. Environmental Science & Technology, 2016, 50(14): 7610-7617. [百度学术]
PLANER-FRIEDRICH B, LONDON J, McCLESKEY R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park:Determination,preservation,and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251. [百度学术]
SAUNDERS J A, LEE M K, DHAKAL P, et al. Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite[J]. Applied Geochemistry,2018, 96: 233-243. [百度学术]
CORKHILL C L, WINCOTT P L, LLOYD J R, et al. The oxidative dissolution of arsenopyrite(FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans[J]. Geochimica et Cosmochimica Acta, 2008, 72(23): 5616-5633. [百度学术]
DRAHOTA P, FILIPPI M. Secondary arsenic minerals in the environment: A review[J]. Environment International, 2009, 35: 1243-1255. [百度学术]
LENGKE M F, SANPAWANITCHAKIT C, TEMPEL R N. The oxidation and dissolution of arsenic-bearing sulfides[J]. The Canadian Mineralogist, 2009, 47(3): 593-613. [百度学术]
周永章, 宋书巧, 杨志军, 等. 河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应——以广西刁江流域为例 [J]. 地质通报, 2005, 24(10/11): 71-77. [百度学术]
曾敏, 廖柏寒, 曾清如, 等. 湖南郴州、石门、冷水江3个矿区As污染状况的初步调查 [J]. 农业环境科学学报, 2006, 25(2): 418-421. [百度学术]
项萌, 张国平, 李玲, 等. 广西河池铅锑矿冶炼区土壤中锑等重金属的分布特征及影响因素分析 [J]. 地球与环境, 2010, 38(4): 495-500. [百度学术]
蹇丽, 李慧君, 吴琳, 等. 广西高砷区采矿业污染河流治理探讨 [J]. 环境科学与管理, 2012, 37(4): 108-111+148. [百度学术]
SUN J, WU P, HAN Z, et al. Influence of wastewater from a high Arsenic coal mine on quality of epikarst water[J]. Research of Environmental Sciences, 2009,22(12): 1440-1444. [百度学术]
ISLAM F S, GAULT A G, BOOTHMAN C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments [J]. Nature, 2004, 430(6995): 68-71. [百度学术]
罗婷, 景传勇. 地下水As污染形成机制研究进展 [J]. 环境化学, 2011, 30(1): 77-83. [百度学术]
贾永锋, 郭华明. 高砷地下水研究的热点及发展趋势 [J]. 地球科学进展, 2013, 28(1): 51-61. [百度学术]
YE L, MENG X, JING C. Influence of sulfur on the mobility of arsenic and antimony during oxic-anoxic cycles: Differences and competition[J].Geochimica et Cosmochimica Acta, 2020, 288: 51-67. [百度学术]
ZHU Y G,XUE X M,KAPPLER A, et al. Linking genes to microbial biogeochemical cycling:Lessons from arsenic[J].Environmental Science & Technology,2017,51(13): 7326-7339. [百度学术]
HU Z Y, ZHU Y G, LI M, et al.Sulfur(S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice(Oryza sativa L.)seedlings[J]. Environmental Pollution,2007, 147(2):387-93. [百度学术]
BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of the Total Environment,2018,613/614: 398-408. [百度学术]
LU Z, STREETS D G, ZHANG Q, et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000[J]. Atmospheric Chemistry and Physics, 2010,10(13):6311-6331. [百度学术]
BOTTRELL S H, NEWTON R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J].Earth-Science Reviews,2006,75(1/2/3/4): 59-83. [百度学术]
GRAUPNER B J, KOCH C, PROMMER H. Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters[J].Journal of Hydrology,2014,513: 169-178. [百度学术]
ZHANG X, LI X, GAO X. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system,China[J]. Environmental Science and Pollution Research,2016, 23(7): 6286-6299. [百度学术]
SUN J, QUICKSALL A N, CHILLRUD S N, et al. Arsenic mobilization from sediments in microcosms under sulfate reduction[J]. Chemosphere,2016,153: 254-261. [百度学术]
WANG J, ZENG X C, ZHU X, et al. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater[J]. Journal of Hazardous Materials, 2017,339:409-417. [百度学术]
ALAM R, MCPHEDRAN K. Applications of biological sulfate reduction for remediation of arsenic—A review[J].Chemosphere, 2019, 222:932-944. [百度学术]
DENG S, GU G, WU Z, et al. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms[J].Chemosphere,2017, 185:403-411. [百度学术]
ACHARYYA S,LAHIRI S,RAYMAHASHAY B,et al. Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh:The role of Quaternary stratigraphy and Holocene sea-level fluctuation[J]. Environmental Geology,2000,39(10): 1127-1137. [百度学术]
NEWMAN D K,KENNEDY E K,COATES J D,et al. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp.nov[J]. Archives of Microbiology,1997, 168(5):380-388. [百度学术]
ZOBRIST J, DOWDLE P R, DAVIS J A, et al.Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J].Environmental Science & Technology, 2000, 34(22): 4747-4753. [百度学术]
APPELO C,van der WEIDEN M J J,TOURNASSAT C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J].Environmental Science & Technology,2002,36(14):3096-3103. [百度学术]
HONGSHAO Z, STANFORTH R. Competitive adsorption of phosphate and arsenate on goethite [J]. Environmental Science & Technology,2001,35(24): 4753-4757. [百度学术]
WASMUND K, MUßMANN M, LOY A. The life sulfuric:Microbial ecology of sulfur cycling in marine sediments[J].Environmental Microbiology Reports, 2017,9(4):323-344. [百度学术]
SIEVERT S M, KIENE R P, SCHULZ-VOGT H N. The sulfur cycle[J]. Oceanography,2007,20(2): 117-123. [百度学术]
LELOUP J, FOSSING H, KOHLS K, et al. Sulfate‐reducing bacteria in marine sediment(Aarhus Bay, Denmark):Abundance and diversity related to geochemical zonation[J]. Environmental Microbiology, 2009,11(5): 1278-1291. [百度学术]
THIEL J, BYRNE J M, KAPPLER A, et al. Pyrite formation from FeS and H2S is mediated through microbial redox activity[J]. Proceedings of the National Academy of Sciences, 2019,116(14): 6897-6902. [百度学术]
PLANER-FRIEDRICH B, HÄRTIG C,LOHMAYER R, et al. Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate[J]. Environmental Science & Technology,2015, 49(11): 6554-6563. [百度学术]
HELZ G R, TOSSELL J A. Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4457-4468. [百度学术]
HELZ G R, TOSSELL J A, CHARNOCK J M, et al. Oligomerization in As(Ⅲ) sulfide solutions: Theoretical constraints and spectroscopic evidence[J]. Geochimica et Cosmochimica Acta,1995,59(22):4591-4604. [百度学术]
MUYZER G, STAMS A J. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454. [百度学术]
RABUS R,HANSEN T A, WIDDEL F. Dissimilatory sulfate- and sulfur-reducing prokaryotes[M]// ROSENBERG E,ed. The Prokaryotes. Berlin: Springer-Verlag, 2013: 659-768. [百度学术]
HAO T, XIANG P, MACKEY H R, et al. A review of biological sulfate conversions in wastewater treatment [J]. Water Research, 2014, 65: 1-21. [百度学术]
ZHANG L, LIN X, ZHANG Z, et al. Elemental sulfur as an electron acceptor for organic matter removal in a new high-rate anaerobic biological wastewater treatment process [J]. Chemical Engineering Journal, 2018, 331: 16-22. [百度学术]
WANG S, HE X Y, PAN R, et al. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions [J]. Environmental Science and Pollution Research, 2016, 23(8): 7267-7277. [百度学术]
ROCHETTE E A, BOSTICK B C, LI G, et al. Kinetics of arsenate reduction by dissolved sulfide[J]. Environmental Science & Technology, 2000, 34(22): 4714-4720. [百度学术]
O'DAY P A, VLASSOPOULOS D, ROOT R, et al. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions[J]. Proceedings of the National Academy of Sciences, 2004, 101(38): 13703-13708. [百度学术]
XU L, WU X, WANG S, et al. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities [J]. Journal of Hazardous Materials, 2016, 301: 538-546. [百度学术]
FRIEDRICH C G,BARDISCHEWSKY F,ROTHER D, et al. Prokaryotic sulfur oxidation [J]. Current Opinion in Microbiology, 2005,8(3): 253-259. [百度学术]
FRIEDRICH C G,ROTHER D,BARDISCHEWSKY F, et al. Oxidation of reduced inorganic sulfur compounds by bacteria:Emergence of a common mechanism?[J]. Applied and Environmental Microbiology, 2001, 67(7): 2873-2882. [百度学术]
FRIEDRICH C G, QUENTMEIER A, BARDISCHEWSKY F, et al. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17 [J]. Journal of Bacteriology,2000, 182(17): 4677-4687. [百度学术]
BELLER H R, CHAIN P S, LETAIN T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology,2006,188(4): 1473-1488. [百度学术]
GHOSH W, DAM B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews,2009,33(6):999-1043. [百度学术]
FRY B, RUF W, GEST H, et al. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution[J]. Chemical Geology: Isotope Geoscience Section, 1988, 73(3): 205-210. [百度学术]
FISHER J C, WALLSCHLÄGER D, PLANER-FRIEDRICH B, et al. A new role for sulfur in arsenic cycling [J]. Environmental Science & Technology, 2008,42(1): 81-85. [百度学术]
HOEFT S E, KULP T R, STOLZ J F, et al. Dissimilatory arsenate reduction with sulfide as electron donor:Experiments with mono lake water and isolation of strain MLMS-1,a chemoautotrophic arsenate respirer[J]. Applied and Environmental Microbiology, 2004, 70(5): 2741-2747. [百度学术]
HOLLIBAUGH J T, BUDINOFF C, HOLLIBAUGH R A, et al. Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake[J]. Applied and Environmental Microbiology,2006, 72(3): 2043-2049. [百度学术]
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5): 517-568. [百度学术]
KUMAR N,NOEL V,PLANER-FRIEDRICH B,et al. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments[J]. Environmental Science & Technology, 2020, 54(6): 3237-3244. [百度学术]
SUN S, XIE X, LI J, et al. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2020, 590:125268. [百度学术]
ZAKAZNOVA-HERZOG V P, SEWARD T M. A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22 oC[J]. Geochimica et Cosmochimica Acta, 2012, 83: 48-60. [百度学术]
BOSTICK B, FENDORF S, BROWN G. In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions[J]. Mineralogical Magazine, 2005, 69(5): 781-795. [百度学术]
FRICKE M, ZELLER M, CULLEN W, et al. Dimethylthioarsinic anhydride:A standard for arsenic speciation[J]. Anal Chim Acta, 2007,583(1): 78-83. [百度学术]
严克涛, 郭清海. 地下水环境中的硫代砷研究进展[J]. 水文地质工程地质,2019, 46(6): 132-141+178. [百度学术]
GUO Q, PLANER-FRIEDRICH B, LIU M, et al. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region,China[J]. Chemical Geology, 2017, 453: 12-20. [百度学术]
KELLER N S, STEFÁNSSON A, SIGFÚSSON B. Arsenic speciation in natural sulfidic geothermal waters [J].Geochimica et Cosmochimica Acta,2014,142: 15-26. [百度学术]
SUESS E, WALLSCHLÄGER D, PLANER-FRIEDRICH B. Stabilization of thioarsenates in iron-rich waters[J]. Chemosphere, 2011, 83(11): 1524-1531. [百度学术]
STAUDER S, RAUE B, SACHER F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5939. [百度学术]
WANG J, KERL C F, HU P, et al. Thiolated arsenic species observed in rice paddy pore waters[J]. Nature Geoscience, 2020, 13(4): 282-287. [百度学术]
THAMDRUP B, FINSTER K, HANSEN J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese[J]. Applied and Environmental Microbiology,1993,59(1): 101-108. [百度学术]
SLOBODKIN A, SLOBODKINA G. Diversity of sulfur-disproportionating microorganisms[J]. Microbiology, 2019, 88(5): 509-522. [百度学术]
MÜLLER H, MAROZAVA S, PROBST A J, et al. Groundwater cable bacteria conserve energy by sulfur disproportionation[J]. The ISME Journal, 2020,14(2): 623-634. [百度学术]
FINSTER K. Microbiological disproportionation of inorganic sulfur compounds[J].Journal of Sulfur Chemistry,2008, 29(3/4): 281-292. [百度学术]
FREDERIKSEN T M, FINSTER K. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur[J].Biodegradation, 2003, 14(3): 189-198. [百度学术]
POSER A, LOHMAYER R, VOGT C, et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes[J]. Extremophiles,2013, 17(6): 1003-1012. [百度学术]
QIU Y Y, ZHANG L, MU X, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation[J]. Water Research,2020,169:115084. [百度学术]
GUO H, ZHOU Y, JIA Y, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin,China: Evidence from multiple isotope approaches[J]. Environmental Science & Technology, 2016, 50(23): 12650-12659. [百度学术]
RITTLE K A, DREVER J I, COLBERG P J S.Precipitation of arsenic during bacterial sulfate reduction [J].Geomicrobiology Journal,1995, 13(1): 1-11. [百度学术]
KIRK M F, HOLM T R, PARK J, et al. Bacterial sulfate reduction limits natural arsenic contamination in groundwater [J]. Geology, 2004, 32(11): 953-956. [百度学术]
KEIMOWITZ A, MAILLOUX B, COLE P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology,2007, 41(19): 6718-6724. [百度学术]
TECLU D, TIVCHEV G, LAING M, et al. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria[J]. Water Research, 2008, 42(19): 4885-4893. [百度学术]
SAALFIELD S L, BOSTICK B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems[J]. Environmental Science & Technology,2009,43(23): 8787-8793. [百度学术]
OMOREGIE E O,MCOUTURE R M,van CAPPELLEN P, et al. Arsenic bioremediation by biogenic iron oxides and sulfides[J]. Applied and Environmental Microbiology, 2013, 79(14): 4325-4335. [百度学术]
MAGUFFIN S C, JIN Q. Testing biostimulated sulfate reduction as a strategy of arsenic remediation in iron-rich aquifers[J]. Chemical Geology,2018, 493: 80-86. [百度学术]
SUN J, HONG Y, GUO J, et al. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions[J].Water Research,2019, 151: 362-370. [百度学术]
LUDWIG R D, SMYTH D J, BLOWES D W, et al. Treatment of arsenic,heavy metals,and acidity using a mixed ZVI-compost PRB[J].Environmental Science & Technology, 2009, 43(6): 1970-1976. [百度学术]
PI K, WANG Y, XIE X, et al. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides[J].Water Research,2017,109: 337-346. [百度学术]
SAUNDERS J, LEE M K, SHAMSUDDUHA M, et al. Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters[J]. Applied Geochemistry,2008,23(11): 3205-3214. [百度学术]
HAUSMANN B, PELIKAN C, HERBOLD C W, et al. Peatland acidobacteria with a dissimilatory sulfur metabolism[J]. The ISME Journal, 2018, 12(7): 1729-1742. [百度学术]
ANANTHARAMAN K, HAUSMANN B, JUNGBLUTH S P, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle[J]. The ISME Journal, 2018, 12(7): 1715-1728. [百度学术]
BELL E, LAMMINMAKI T, ALNEBERG J, et al. Active sulfur cycling in the terrestrial deep subsurface[J].The ISME Journal, 2020, 14(5): 1260-1272. [百度学术]
HUA Z S, HAN Y J, CHEN L X, et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics[J].The ISME Journal, 2015, 9(6): 1280-1294. [百度学术]
CHEN L X, HU M, HUANG L N, et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage[J]. The ISME Journal, 2015, 9(7): 1579-1592. [百度学术]
KUANG J, HUANG L, HE Z, et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage[J].The ISME Journal,2016,10(6):1527-1539. [百度学术]
CHEN X, ZHENG L, DONG X, et al. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics[J]. Environmental Geochemistry and Health, 2020, 42(9): 2865-2879. [百度学术]
MIAO Z, CARROLL K C, BRUSSEAU M L. Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona,USA[J]. Journal of Hydrology, 2013, 504: 207-215. [百度学术]
BATTAGLIA-BRUNET F,CROUZET C,BURNOL A, et al. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor [J]. Water Research, 2012, 46(12):3923-3933. [百度学术]
SARKAR S,BLANEY L M, GUPTA A, et al.Arsenic removal from groundwater and its safe containment in a rural environment:Validation of a sustainable approach[J].Environmental Science & Technology, 2008, 42(12): 4268-4273. [百度学术]
GIBERT O, de PABLO J, CORTINA J L, et al. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures[J]. Environmental Geochemistry and Health,2010,32(4): 373-378. [百度学术]
WEN B, ZHOU A, ZHOU J, et al. Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine,central China[J]. Journal of Hydrology, 2018, 557: 211-221. [百度学术]
KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology,2005,39(5): 1291-1298. [百度学术]
KANEL S R,MGRENECHE J, CHOI H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science & Technology, 2006, 40(6): 2045-2050. [百度学术]
ZACARíAS-ESTRADA O L, BALLINAS-CASARRUBIAS L,MONTERO-CABRERA M E, et al.Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor[J]. Journal of Hazardous Materials, 2020, 384: 121392. [百度学术]
ISLAM S, REDWAN A, MILLERICK K, et al. Effect of copresence of zerovalent iron and sulfate reducing bacteria on reductive dechlorination of trichloroethylene[J]. Environmental Science & Technology, 2021, 55(8): 4851-4861. [百度学术]
152
浏览量
238
下载量
0
CSCD
相关文章
相关作者
相关机构