1.广东省环境污染控制与修复技术重点实验室 / 中山大学环境科学与工程学院,广东 广州 510275
2.广东省化学品污染与环境安全重点实验室 / 环境理论化学教育部重点实验室 / 华南师范大学 环境学院,广东 广州 510006
郭家华(1994年生),男;研究方向:环境科学;E-mail:guojh57@mail2.sysu.edu.cn
江峰(1980年生),男;研究方向:水污染控制、环境地学;E-mail:jiangf58@mail.sysu.edu.cn 江峰,教授,博士生导师,2019年入选珠江学者岗位计划特聘教授,同年作为“百人计划”中青年杰出人才引进至中山大学,现任广东省城市水系统管理与治理技术国际联合研究中心主任。近5年以通信作者在自然指数源刊ES & T和WR发表论文19篇,授权国内外发明专利10项,技术成果获2019年“首创水星奖”金奖(独立获得),担任国际水协会(International Water Association)会刊Water Research的Associate Editor。
纸质出版日期:2022-11-25,
网络出版日期:2022-05-26,
收稿日期:2021-12-22,
录用日期:2022-03-18
扫 描 看 全 文
郭家华,周舜杰,丘艳莹等.硫循环驱动矿区地下水As污染形成与As形态转化的研究进展[J].中山大学学报(自然科学版),2022,61(06):1-14.
GUO Jiahua,ZHOU Shunjie,QIU Yanying,et al.Research progress on arsenic formation and conversion in groundwater in mining areas driven by biogeochemical sulfur cycle[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):1-14.
郭家华,周舜杰,丘艳莹等.硫循环驱动矿区地下水As污染形成与As形态转化的研究进展[J].中山大学学报(自然科学版),2022,61(06):1-14. DOI: 10.13471/j.cnki.acta.snus.2021D087.
GUO Jiahua,ZHOU Shunjie,QIU Yanying,et al.Research progress on arsenic formation and conversion in groundwater in mining areas driven by biogeochemical sulfur cycle[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):1-14. DOI: 10.13471/j.cnki.acta.snus.2021D087.
矿区地下水As污染导致严重的环境与健康问题。矿区地下水As释放与迁移转化过程中,硫的生物地球化学循环起关键作用,包括一系列S-As复杂的生物化学反应。硫循环对As污染的影响机制尚不清楚,限制了As污染控制技术的研发与应用。因此,厘清生化硫循环对矿区地下水As污染形成与As形态转化的影响是控制矿区地下水As污染的关键。本文综述了硫的还原、氧化以及歧化等多个硫转化过程组成的硫循环机制及其对矿区地下水As污染形成与As形态转化中的影响。结果表明,硫还原过程对矿区地下水As污染的形成与转化作用具有两面性,既可导致As释放,亦可使As固定;硫氧化过程可把As(Ⅲ)转化为As(Ⅴ)从而被吸附固定,同时可介导As还原使As毒性及可移动性增强;此外,自养的硫歧化过程可改变矿区地下水中S的价态和形态,进而对As的迁移转化产生显著影响。本文对S-As耦合循环对矿区地下水As污染控制的意义与发展前景进行了展望,提出在矿区地下水As污染的形成、转化与控制研究中,应首先明晰地下水硫生物地球化学循环网络并探明其对As形态转化的影响,进而构建S-As耦合转化数学模型,以助于研发更有效的矿区地下水As污染控制技术。本综述有助于增进对矿区地下水As污染形成及As形态转化机制的认识,为矿区地下水As污染有效控制提供可行技术支撑。
Arsenic pollution of groundwater in the mining areas leads to serious problems in environmental impact and human health. The biogeochemical cycle of sulfur plays a critical role in the release
migration
and transformation of arsenic in groundwater in the mining areas. Notably
arsenic and sulfur undergo similar chemical and biological redox reactions
and their biogeochemical cycles are often interconnected
making it difficult to clarify the influence of the sulfur cycle on the transformation of arsenic. Accordingly
clarifying the impact mechanism of the biochemical sulfur cycle on the formation and conversion of arsenic is the core to controlling the arsenic pollution in groundwater in mining areas. This article reviews the roles of various biochemical sulfur processes including sulfate reduction
sulfide oxidation
and sulfur disproportionation in the arsenic formation and transformation. It is demonstrated that the dissimilatory sulfate reduction process plays a dual role in the formation and conversion of arsenic in groundwater in mining areas. The sulfur oxidation process has the potential to immobilize arsenic by using free or arsenic-bound sulfur as an electron donor to directly or indirectly transform arsenic and thioarsenat to arsenate
or reduce arsenate. Furthermore
as an important biogeochemical sulfur processes
sulfur disproportionation may also involve in the migration and transformation of arsenic in groundwater. In brief
transformations involving sulfur significantly impact the fate of environmental arsenic. The current status and prospect of the S-As coupling cycle on the arsenic pollution control of groundwater in mining areas were also discussed. Firstly
the reaction conditions of the sulfur biochemical reaction process should be investigated and the mechanism of arsenic transformation during the biogeochemical cycle of sulfur should be developed. Secondly
the sulfur-arsenic coupling transformation biogeochemical model should be constructed by integrating the reaction kinetic model of the sulfur biogeochemical cycle and the arsenic-sulfur hydrochemical model. Finally
the mechanism of arsenic transformation in groundwater should be elucidated to develop the controlling strategies for arsenic pollution. The findings will improve the understanding of arsenic pollution in mining area
and provide scientific advice for arsenic-contaminated mining groundwater treatment.
高硫矿区地下水砷污染硫酸盐还原菌硫的生物地球化学循环
high-sulfur mining areasgroundwaterarsenic pollutionsulfate-reducing bacteriabiogeochemical sulfur cycle
RATNAIKE R N. Acute and chronic arsenic toxicity[J].Postgraduate Medical Journal,2003,79(933):391-396.
LI G, SUN G X, WILLIAMS P N, et al. Inorganic arsenic in Chinese food and its cancer risk[J].Environment International, 2011, 37(7): 1219-1225.
HUGHES M F. Arsenic toxicity and potential mechanisms of action[J].Toxicology Letters,2002,133(1): 1-16.
SMITH A H, LINGAS E O, RAHMAN M. Contamination of drinking-water by arsenic in Bangladesh:A public health emergency[J]. Bulletin of the World Health Organization, 2000, 78: 1093-1103.
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020,368(6493):845-850.
RODRIGUEZ-LADO L, SUN G, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science, 2013, 341(6148): 866-868.
GUO H, WEN D, LIU Z, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Applied Geochemistry, 2014, 41: 196-217.
郭华明, 郭琦, 贾永锋, 等. 中国不同区域高砷地下水化学特征及形成过程[J]. 地球科学与环境学报, 2013, 35(3): 83-96.
肖细元, 陈同斌, 廖晓勇, 等. 中国主要含砷矿产资源的区域分布与As污染问题 [J]. 地理研究, 2008, 27(1): 201-212.
王萍, 王世亮, 刘少卿, 等. 砷的发生、形态、污染源及地球化学循环[J]. 环境科学与技术, 2010, 33(7): 90-97.
宋波, 刘畅, 陈同斌. 广西土壤和沉积物砷含量及污染分布特征 [J]. 自然资源学报, 2017, 32(4): 654-668.
LIU M, XU X, WANG D, et al. Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective[J]. Journal of Hydrology, 2016, 535: 173-180.
韦磊. 地下水As污染形成机制研究进展 [J]. 低碳世界, 2019, 9(5): 24-25.
缪钟灵. 喀斯特区域地下水污染问题初步探讨 [J]. 中国地质, 1983 (1): 16-19.
LIU C P, LUO C L, GAO Y, et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China[J]. Environmental Pollution, 2010, 158(3): 820-826.
李玲, 张国平, 刘虹, 等. 广西大厂矿区土壤-植物系统中Sb、As的迁移转化特征 [J]. 环境科学学报, 2010, 30(11): 2305-2313.
周永章, 宋书巧, 张澄博, 等. 河流对矿山及矿山开发的水环境地球化学响应——以广西刁江水系为例 [J]. 地质通报, 2005, 24(10/11): 66-70.
BURTON E D, BUSH R T, JOHNSTON S G, et al. Sorption of arsenic(V) and arsenic(Ⅲ) to schwertmannite[J]. Environmental Science & Technology, 2009, 43(24): 9202-9207.
KUMAR N, COUTURE R M, MILLOT R, et al. Microbial sulfate reduction enhances arsenic mobility downstream of zerovalent-iron-based permeable reactive barrier[J]. Environmental Science & Technology, 2016, 50(14): 7610-7617.
PLANER-FRIEDRICH B, LONDON J, McCLESKEY R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park:Determination,preservation,and geochemical importance[J]. Environmental Science & Technology, 2007, 41(15): 5245-5251.
SAUNDERS J A, LEE M K, DHAKAL P, et al. Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite[J]. Applied Geochemistry,2018, 96: 233-243.
CORKHILL C L, WINCOTT P L, LLOYD J R, et al. The oxidative dissolution of arsenopyrite(FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans[J]. Geochimica et Cosmochimica Acta, 2008, 72(23): 5616-5633.
DRAHOTA P, FILIPPI M. Secondary arsenic minerals in the environment: A review[J]. Environment International, 2009, 35: 1243-1255.
LENGKE M F, SANPAWANITCHAKIT C, TEMPEL R N. The oxidation and dissolution of arsenic-bearing sulfides[J]. The Canadian Mineralogist, 2009, 47(3): 593-613.
周永章, 宋书巧, 杨志军, 等. 河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应——以广西刁江流域为例 [J]. 地质通报, 2005, 24(10/11): 71-77.
曾敏, 廖柏寒, 曾清如, 等. 湖南郴州、石门、冷水江3个矿区As污染状况的初步调查 [J]. 农业环境科学学报, 2006, 25(2): 418-421.
项萌, 张国平, 李玲, 等. 广西河池铅锑矿冶炼区土壤中锑等重金属的分布特征及影响因素分析 [J]. 地球与环境, 2010, 38(4): 495-500.
蹇丽, 李慧君, 吴琳, 等. 广西高砷区采矿业污染河流治理探讨 [J]. 环境科学与管理, 2012, 37(4): 108-111+148.
SUN J, WU P, HAN Z, et al. Influence of wastewater from a high Arsenic coal mine on quality of epikarst water[J]. Research of Environmental Sciences, 2009,22(12): 1440-1444.
ISLAM F S, GAULT A G, BOOTHMAN C, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments [J]. Nature, 2004, 430(6995): 68-71.
罗婷, 景传勇. 地下水As污染形成机制研究进展 [J]. 环境化学, 2011, 30(1): 77-83.
贾永锋, 郭华明. 高砷地下水研究的热点及发展趋势 [J]. 地球科学进展, 2013, 28(1): 51-61.
YE L, MENG X, JING C. Influence of sulfur on the mobility of arsenic and antimony during oxic-anoxic cycles: Differences and competition[J].Geochimica et Cosmochimica Acta, 2020, 288: 51-67.
ZHU Y G,XUE X M,KAPPLER A, et al. Linking genes to microbial biogeochemical cycling:Lessons from arsenic[J].Environmental Science & Technology,2017,51(13): 7326-7339.
HU Z Y, ZHU Y G, LI M, et al.Sulfur(S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice(Oryza sativa L.)seedlings[J]. Environmental Pollution,2007, 147(2):387-93.
BAO P, LI G X, SUN G X, et al. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of the Total Environment,2018,613/614: 398-408.
LU Z, STREETS D G, ZHANG Q, et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000[J]. Atmospheric Chemistry and Physics, 2010,10(13):6311-6331.
BOTTRELL S H, NEWTON R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J].Earth-Science Reviews,2006,75(1/2/3/4): 59-83.
GRAUPNER B J, KOCH C, PROMMER H. Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters[J].Journal of Hydrology,2014,513: 169-178.
ZHANG X, LI X, GAO X. Hydrochemistry and coal mining activity induced karst water quality degradation in the Niangziguan karst water system,China[J]. Environmental Science and Pollution Research,2016, 23(7): 6286-6299.
SUN J, QUICKSALL A N, CHILLRUD S N, et al. Arsenic mobilization from sediments in microcosms under sulfate reduction[J]. Chemosphere,2016,153: 254-261.
WANG J, ZENG X C, ZHU X, et al. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater[J]. Journal of Hazardous Materials, 2017,339:409-417.
ALAM R, MCPHEDRAN K. Applications of biological sulfate reduction for remediation of arsenic—A review[J].Chemosphere, 2019, 222:932-944.
DENG S, GU G, WU Z, et al. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms[J].Chemosphere,2017, 185:403-411.
ACHARYYA S,LAHIRI S,RAYMAHASHAY B,et al. Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh:The role of Quaternary stratigraphy and Holocene sea-level fluctuation[J]. Environmental Geology,2000,39(10): 1127-1137.
NEWMAN D K,KENNEDY E K,COATES J D,et al. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp.nov[J]. Archives of Microbiology,1997, 168(5):380-388.
ZOBRIST J, DOWDLE P R, DAVIS J A, et al.Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J].Environmental Science & Technology, 2000, 34(22): 4747-4753.
APPELO C,van der WEIDEN M J J,TOURNASSAT C, et al. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic [J].Environmental Science & Technology,2002,36(14):3096-3103.
HONGSHAO Z, STANFORTH R. Competitive adsorption of phosphate and arsenate on goethite [J]. Environmental Science & Technology,2001,35(24): 4753-4757.
WASMUND K, MUßMANN M, LOY A. The life sulfuric:Microbial ecology of sulfur cycling in marine sediments[J].Environmental Microbiology Reports, 2017,9(4):323-344.
SIEVERT S M, KIENE R P, SCHULZ-VOGT H N. The sulfur cycle[J]. Oceanography,2007,20(2): 117-123.
LELOUP J, FOSSING H, KOHLS K, et al. Sulfate‐reducing bacteria in marine sediment(Aarhus Bay, Denmark):Abundance and diversity related to geochemical zonation[J]. Environmental Microbiology, 2009,11(5): 1278-1291.
THIEL J, BYRNE J M, KAPPLER A, et al. Pyrite formation from FeS and H2S is mediated through microbial redox activity[J]. Proceedings of the National Academy of Sciences, 2019,116(14): 6897-6902.
PLANER-FRIEDRICH B, HÄRTIG C,LOHMAYER R, et al. Anaerobic chemolithotrophic growth of the haloalkaliphilic bacterium strain MLMS-1 by disproportionation of monothioarsenate[J]. Environmental Science & Technology,2015, 49(11): 6554-6563.
HELZ G R, TOSSELL J A. Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4457-4468.
HELZ G R, TOSSELL J A, CHARNOCK J M, et al. Oligomerization in As(Ⅲ) sulfide solutions: Theoretical constraints and spectroscopic evidence[J]. Geochimica et Cosmochimica Acta,1995,59(22):4591-4604.
MUYZER G, STAMS A J. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology, 2008, 6(6): 441-454.
RABUS R,HANSEN T A, WIDDEL F. Dissimilatory sulfate- and sulfur-reducing prokaryotes[M]// ROSENBERG E,ed. The Prokaryotes. Berlin: Springer-Verlag, 2013: 659-768.
HAO T, XIANG P, MACKEY H R, et al. A review of biological sulfate conversions in wastewater treatment [J]. Water Research, 2014, 65: 1-21.
ZHANG L, LIN X, ZHANG Z, et al. Elemental sulfur as an electron acceptor for organic matter removal in a new high-rate anaerobic biological wastewater treatment process [J]. Chemical Engineering Journal, 2018, 331: 16-22.
WANG S, HE X Y, PAN R, et al. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions [J]. Environmental Science and Pollution Research, 2016, 23(8): 7267-7277.
ROCHETTE E A, BOSTICK B C, LI G, et al. Kinetics of arsenate reduction by dissolved sulfide[J]. Environmental Science & Technology, 2000, 34(22): 4714-4720.
O'DAY P A, VLASSOPOULOS D, ROOT R, et al. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions[J]. Proceedings of the National Academy of Sciences, 2004, 101(38): 13703-13708.
XU L, WU X, WANG S, et al. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities [J]. Journal of Hazardous Materials, 2016, 301: 538-546.
FRIEDRICH C G,BARDISCHEWSKY F,ROTHER D, et al. Prokaryotic sulfur oxidation [J]. Current Opinion in Microbiology, 2005,8(3): 253-259.
FRIEDRICH C G,ROTHER D,BARDISCHEWSKY F, et al. Oxidation of reduced inorganic sulfur compounds by bacteria:Emergence of a common mechanism?[J]. Applied and Environmental Microbiology, 2001, 67(7): 2873-2882.
FRIEDRICH C G, QUENTMEIER A, BARDISCHEWSKY F, et al. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17 [J]. Journal of Bacteriology,2000, 182(17): 4677-4687.
BELLER H R, CHAIN P S, LETAIN T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology,2006,188(4): 1473-1488.
GHOSH W, DAM B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews,2009,33(6):999-1043.
FRY B, RUF W, GEST H, et al. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution[J]. Chemical Geology: Isotope Geoscience Section, 1988, 73(3): 205-210.
FISHER J C, WALLSCHLÄGER D, PLANER-FRIEDRICH B, et al. A new role for sulfur in arsenic cycling [J]. Environmental Science & Technology, 2008,42(1): 81-85.
HOEFT S E, KULP T R, STOLZ J F, et al. Dissimilatory arsenate reduction with sulfide as electron donor:Experiments with mono lake water and isolation of strain MLMS-1,a chemoautotrophic arsenate respirer[J]. Applied and Environmental Microbiology, 2004, 70(5): 2741-2747.
HOLLIBAUGH J T, BUDINOFF C, HOLLIBAUGH R A, et al. Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake[J]. Applied and Environmental Microbiology,2006, 72(3): 2043-2049.
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry,2002,17(5): 517-568.
KUMAR N,NOEL V,PLANER-FRIEDRICH B,et al. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments[J]. Environmental Science & Technology, 2020, 54(6): 3237-3244.
SUN S, XIE X, LI J, et al. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern China[J]. Journal of Hydrology, 2020, 590:125268.
ZAKAZNOVA-HERZOG V P, SEWARD T M. A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22 oC[J]. Geochimica et Cosmochimica Acta, 2012, 83: 48-60.
BOSTICK B, FENDORF S, BROWN G. In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions[J]. Mineralogical Magazine, 2005, 69(5): 781-795.
FRICKE M, ZELLER M, CULLEN W, et al. Dimethylthioarsinic anhydride:A standard for arsenic speciation[J]. Anal Chim Acta, 2007,583(1): 78-83.
严克涛, 郭清海. 地下水环境中的硫代砷研究进展[J]. 水文地质工程地质,2019, 46(6): 132-141+178.
GUO Q, PLANER-FRIEDRICH B, LIU M, et al. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region,China[J]. Chemical Geology, 2017, 453: 12-20.
KELLER N S, STEFÁNSSON A, SIGFÚSSON B. Arsenic speciation in natural sulfidic geothermal waters [J].Geochimica et Cosmochimica Acta,2014,142: 15-26.
SUESS E, WALLSCHLÄGER D, PLANER-FRIEDRICH B. Stabilization of thioarsenates in iron-rich waters[J]. Chemosphere, 2011, 83(11): 1524-1531.
STAUDER S, RAUE B, SACHER F. Thioarsenates in sulfidic waters[J]. Environmental Science & Technology, 2005, 39(16): 5933-5939.
WANG J, KERL C F, HU P, et al. Thiolated arsenic species observed in rice paddy pore waters[J]. Nature Geoscience, 2020, 13(4): 282-287.
THAMDRUP B, FINSTER K, HANSEN J W, et al. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese[J]. Applied and Environmental Microbiology,1993,59(1): 101-108.
SLOBODKIN A, SLOBODKINA G. Diversity of sulfur-disproportionating microorganisms[J]. Microbiology, 2019, 88(5): 509-522.
MÜLLER H, MAROZAVA S, PROBST A J, et al. Groundwater cable bacteria conserve energy by sulfur disproportionation[J]. The ISME Journal, 2020,14(2): 623-634.
FINSTER K. Microbiological disproportionation of inorganic sulfur compounds[J].Journal of Sulfur Chemistry,2008, 29(3/4): 281-292.
FREDERIKSEN T M, FINSTER K. Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur[J].Biodegradation, 2003, 14(3): 189-198.
POSER A, LOHMAYER R, VOGT C, et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes[J]. Extremophiles,2013, 17(6): 1003-1012.
QIU Y Y, ZHANG L, MU X, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation[J]. Water Research,2020,169:115084.
GUO H, ZHOU Y, JIA Y, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin,China: Evidence from multiple isotope approaches[J]. Environmental Science & Technology, 2016, 50(23): 12650-12659.
RITTLE K A, DREVER J I, COLBERG P J S.Precipitation of arsenic during bacterial sulfate reduction [J].Geomicrobiology Journal,1995, 13(1): 1-11.
KIRK M F, HOLM T R, PARK J, et al. Bacterial sulfate reduction limits natural arsenic contamination in groundwater [J]. Geology, 2004, 32(11): 953-956.
KEIMOWITZ A, MAILLOUX B, COLE P, et al. Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy[J]. Environmental Science & Technology,2007, 41(19): 6718-6724.
TECLU D, TIVCHEV G, LAING M, et al. Bioremoval of arsenic species from contaminated waters by sulphate-reducing bacteria[J]. Water Research, 2008, 42(19): 4885-4893.
SAALFIELD S L, BOSTICK B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems[J]. Environmental Science & Technology,2009,43(23): 8787-8793.
OMOREGIE E O,MCOUTURE R M,van CAPPELLEN P, et al. Arsenic bioremediation by biogenic iron oxides and sulfides[J]. Applied and Environmental Microbiology, 2013, 79(14): 4325-4335.
MAGUFFIN S C, JIN Q. Testing biostimulated sulfate reduction as a strategy of arsenic remediation in iron-rich aquifers[J]. Chemical Geology,2018, 493: 80-86.
SUN J, HONG Y, GUO J, et al. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions[J].Water Research,2019, 151: 362-370.
LUDWIG R D, SMYTH D J, BLOWES D W, et al. Treatment of arsenic,heavy metals,and acidity using a mixed ZVI-compost PRB[J].Environmental Science & Technology, 2009, 43(6): 1970-1976.
PI K, WANG Y, XIE X, et al. Remediation of arsenic-contaminated groundwater by in-situ stimulating biogenic precipitation of iron sulfides[J].Water Research,2017,109: 337-346.
SAUNDERS J, LEE M K, SHAMSUDDUHA M, et al. Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters[J]. Applied Geochemistry,2008,23(11): 3205-3214.
HAUSMANN B, PELIKAN C, HERBOLD C W, et al. Peatland acidobacteria with a dissimilatory sulfur metabolism[J]. The ISME Journal, 2018, 12(7): 1729-1742.
ANANTHARAMAN K, HAUSMANN B, JUNGBLUTH S P, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle[J]. The ISME Journal, 2018, 12(7): 1715-1728.
BELL E, LAMMINMAKI T, ALNEBERG J, et al. Active sulfur cycling in the terrestrial deep subsurface[J].The ISME Journal, 2020, 14(5): 1260-1272.
HUA Z S, HAN Y J, CHEN L X, et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics[J].The ISME Journal, 2015, 9(6): 1280-1294.
CHEN L X, HU M, HUANG L N, et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage[J]. The ISME Journal, 2015, 9(7): 1579-1592.
KUANG J, HUANG L, HE Z, et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage[J].The ISME Journal,2016,10(6):1527-1539.
CHEN X, ZHENG L, DONG X, et al. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics[J]. Environmental Geochemistry and Health, 2020, 42(9): 2865-2879.
MIAO Z, CARROLL K C, BRUSSEAU M L. Characterization and quantification of groundwater sulfate sources at a mining site in an arid climate: The Monument Valley site in Arizona,USA[J]. Journal of Hydrology, 2013, 504: 207-215.
BATTAGLIA-BRUNET F,CROUZET C,BURNOL A, et al. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor [J]. Water Research, 2012, 46(12):3923-3933.
SARKAR S,BLANEY L M, GUPTA A, et al.Arsenic removal from groundwater and its safe containment in a rural environment:Validation of a sustainable approach[J].Environmental Science & Technology, 2008, 42(12): 4268-4273.
GIBERT O, de PABLO J, CORTINA J L, et al. In situ removal of arsenic from groundwater by using permeable reactive barriers of organic matter/limestone/zero-valent iron mixtures[J]. Environmental Geochemistry and Health,2010,32(4): 373-378.
WEN B, ZHOU A, ZHOU J, et al. Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world's largest antimony mine,central China[J]. Journal of Hydrology, 2018, 557: 211-221.
KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology,2005,39(5): 1291-1298.
KANEL S R,MGRENECHE J, CHOI H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material[J]. Environmental Science & Technology, 2006, 40(6): 2045-2050.
ZACARíAS-ESTRADA O L, BALLINAS-CASARRUBIAS L,MONTERO-CABRERA M E, et al.Arsenic removal and activity of a sulfate reducing bacteria-enriched anaerobic sludge using zero valent iron as electron donor[J]. Journal of Hazardous Materials, 2020, 384: 121392.
ISLAM S, REDWAN A, MILLERICK K, et al. Effect of copresence of zerovalent iron and sulfate reducing bacteria on reductive dechlorination of trichloroethylene[J]. Environmental Science & Technology, 2021, 55(8): 4851-4861.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构