1.中国科学技术大学地球和空间科学学院,安徽 合肥 230026
2.南方科技大学深圳市深远海油气勘探技术重点实验室,广东 深圳 518055
3.南方科技大学地球与空间科学系,广东 深圳 518055
张春丽(1994年生),女;研究方向:地震波数值模拟;E-mail:clzhang@mail.ustc.edu.cn
张伟(1976年生),男;研究方向:计算地震学理论和应用;E-mail:zhangwei@sustech.edu.cn
纸质出版日期:2022-01-25,
网络出版日期:2021-12-22,
收稿日期:2021-10-16,
录用日期:2021-10-28
扫 描 看 全 文
张春丽,张伟.二维弹性波自适应网格有限差分模拟方法[J].中山大学学报(自然科学版),2022,61(01):125-138.
ZHANG Chunli,ZHANG Wei.Two-dimensional elastic wave finite-difference simulation with adaptive mesh refinement[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):125-138.
张春丽,张伟.二维弹性波自适应网格有限差分模拟方法[J].中山大学学报(自然科学版),2022,61(01):125-138. DOI: 10.13471/j.cnki.acta.snus.2021D073.
ZHANG Chunli,ZHANG Wei.Two-dimensional elastic wave finite-difference simulation with adaptive mesh refinement[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):125-138. DOI: 10.13471/j.cnki.acta.snus.2021D073.
弹性波数值模拟的所需的计算资源与网格点数相关。传统均匀网格有限差分方法的网格大小由复杂模型中的最小传播速度决定,导致高速区不必要的过密网格。比起已有的变网格,自适应网格(AMR,adaptive mesh refinement)灵活的结构使其可沿低速区的不规则区间使用密网格,因而计算效率提升更明显。本文将自适应网格同有限差分法结合,发展了适用于复杂模型的二维弹性波高效数值模拟算法。控制方程为一阶速度-应力方程组形式的弹性波方程,一阶空间导数采用高阶同位网格中心差分格式和显式滤波算子计算,时间积分采用四阶Runge-Kutta法。基于现有的自适应网格程序通用框架,实现自适应网格存储结构、网格生成和并行计算的负载均衡问题。数值算例表明,本文提出的方法适用于复杂速度模型的地震波传播计算,计算结果与传统均匀网格结果较一致,相位误差和幅值误差在10%左右。本文提出的方法从两个方面提高了计算效率:一是减少网格点数;二是通过增大高速区网格大小提高满足稳定性的时间步长。
The computation resources required by elastic wave simulations are related to the number of grid points. The grid spacing for the conventional uniform grid is determined by the lowest velocity in the complex model, and thus the high-velocity zones are unnecessarily discretized to a too-small grid spacing. Adaptive Mesh Refinement(AMR) can flexibly deal with different irregular structures, using fine grids only for lower velocity zones, thus with high efficiency. We combine AMR with the finite-difference method to simulate the two-dimensional elastic wave for models with complex structures. The governing equation is the velocity-stress elastic wave equation in the first-order partial differential equation form. We calculate the spatial derivatives using high-order collocated-grid central difference schemes with an explicit filtering operator and implement the time integration with the Runge-Kutta method. We build up our implementation on an existing AMR framework to fulfill the data structure management, mesh generation, and load balance of the AMR. The results of the numerical experiments reveal that our scheme can be used for seismic wave simulations in complex velocity models. The results obtained by the proposed scheme fit well with those obtained by using a uniform grid with both phase and amplitude errors of ~10%. The proposed AMR scheme increases the computational efficiency by two folds: reducing the number of grid points and enlarging the time step as the grid spacing is increased in high-velocity regions.
弹性波数值模拟有限差分法自适应网格负载均衡
elastic wave numerical simulationfinite-difference methodadaptive mesh refinementload balance
MOCZO P. Finite-difference technique for SH-waves in 2-D media using irregular grids-application to the seismic response problem[J]. Geophysical Journal International,1989, 99(2):321-329.
PITARKA A. 3D Elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing[J]. Bulletin of the Seismological Society of America, 1999, 89(1):54-68.
李振春,张慧,张华.一阶弹性波方程的变网格高阶有限差分数值模拟[J].石油地球物理勘探, 2008, 43(6):711-716+611+742.
黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟[J].地球物理学报, 2009, 52(1):176-186.
AOI S, FUJIWARA H. 3D finite-difference method using discontinuous grids[J]. Bulletin of the Seismological Society of America,1999, 89(4):918-930.
MOCZO P,LABÁK P,KRISTEK J, et al. Amplification and differential motion due to an antiplane 2D resonance in the sediment valleys embedded in a layer over the half-space[J]. Bulletin of the Seismological Society of America,1996, 86(5):1434-1446.
ZHANG Z G,ZHANG W,LI H, et al. Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling[J]. Geophysical Journal International,2013, 192(3):1179-1188.
张慧, 李振春. 基于双变网格算法的地震波正演模拟[J]. 地球物理学报,2011, 54(1):77-86.
BERGER M J, OLIGER J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. Journal of Computational Physics, 1984, 53:484-512.
BERGER M J, and RIGOUTSOS I. An algorithm for point clustering and grid generation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21:1278-1286.
WILCOX L C, STADLER G, BURSTEDDE C,et al. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media[J]. Journal of Computational Physics, 2010, 229:9373-9396.
ZHANG C L, ZHANG W. Efficient two-dimensional acoustic wave finite-difference numerical simulation in strongly heterogeneous media using the adaptive mesh refinement (AMR) technique[J]. Geophysics, 2021, accepted.
CRASE E. High-order (space and time) finite-difference modeling of the elastic wave equation[C].San Francisco:SEG Annual Meeting,1990.
BOGEY C, BAILLY C. A family of low dispersive and low dissipative explicit schemes for flow and noise computations[J]. Journal of Computational Physics, 2004, 194(1):194-214.
SUNDAR H, SAMPATH R S, and BIROS G. Bottom-up construction and 2∶1 balance refinement of linear octrees in parallel[J]. SIAM Journal on Scientific Computing, 2008, 30:2675-2708.
ZHANG W Q, ALMGREN A., BECKNER V, et al. AMReX: a framework for block-structured adaptive mesh refinement[J]. Journal of Open Source Software, 2019, 4(37):1370.
KANG T S, BAAG C E. An efficient finite-difference method for simulating 3d seismic response of localized basin structures[J]. Bulletin of the Seismological Society of America, 2004, 94(5):1690-1705.
KRISTEK J, MOCZO P, GALIS M. Stable discontinuous staggered grid in the finite-difference modelling of seismic motion[J]. Geophysical Journal International, 2010, 183:1401-1407.
PRESS W H,TEUKOLSKY S A,VETTERLING W T. et al. Numerical recipes in FORTRAN 77: The Art of Scientific Computing[M].2nd ed.New York:Cambridge University Press,1992.
CERJAN C, KOSLOFF D, KOSLOFF R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J]. Geophysics,1985,50(4):705-708.
KRISTEKOVÁ M, KRISTEK J, MOCZO P, et al. Misfit criteria for quantitative comparison of seismograms[J]. Bulletin of the Seismological Society of America, 2006, 96(5):1836-1850
KRISTEKOVÁ M, KRISTEK J, MOCZO P. Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals[J]. Geophysical Journal International, 2009, 178(2):813-825.
ZHANG W Q, ZHANG Z G, FU H H, et al. Importance of spatial resolution in ground motion simulations with 3-D basins: An example using the Tangshan earthquake[J]. Geophysical Research Letters, 2019, 46:11915-11924.
FEHLER M, KELIHER P J. SEAM Phase I: Challenges of subsalt imaging in tertiary basins, with emphasis on deepwater Gulf of Mexico[R].USA:Society of Exploration Geophysicists,2011.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构