1.中山大学地球科学与工程学院 / 广东省地质过程与矿产资源探查重点实验室,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
3.南方科技大学环境科学与工程学院,广东 深圳 518055
王炜强(1997年生),男;研究方向:水文地质;E-mail:wangwq53@ mail2.sysu.edu.cn
王亚(1981年生),女;研究方向:水文地质与水文地球化学;E-mail:wangya9@ mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-06-21,
收稿日期:2021-08-06,
录用日期:2021-10-20
扫 描 看 全 文
王炜强,王亚,匡星星等.珠江三角洲弱透水层孔隙水水化学及运移模拟[J].中山大学学报(自然科学版),2023,62(01):44-56.
WANG Weiqiang,WANG Ya,KUANG Xingxing,et al.Hydrochemistry and numerical simulation of pore water solute of the Quaternary aquitard in the Pearl River Delta[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):44-56.
王炜强,王亚,匡星星等.珠江三角洲弱透水层孔隙水水化学及运移模拟[J].中山大学学报(自然科学版),2023,62(01):44-56. DOI: 10.13471/j.cnki.acta.snus.2021D063.
WANG Weiqiang,WANG Ya,KUANG Xingxing,et al.Hydrochemistry and numerical simulation of pore water solute of the Quaternary aquitard in the Pearl River Delta[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):44-56. DOI: 10.13471/j.cnki.acta.snus.2021D063.
珠江三角洲第四纪弱透水层上覆于底部承压含水层之上,其水文地球化学演化过程对底部含水层有决定性影响。为认识珠江三角洲弱透水层孔隙水的形成及演化,本文对中山市民众镇ZK01钻孔黏性土孔隙水化学特征、水文地球化学参数、矿物饱和指数等进行了分析,结果显示孔隙水盐度较高,TDS=4.42~30.47 g/L。孔隙水水化学类型为Cl-Na型,与海水类型一致,且主要水化学组分具有浓度随深度增加而上升的趋势。Cl/Br、
γ
(Na/Cl)系数和Gibbs分析显示孔隙水具有海水起源的特征,地下水盐度很可能来源于全新世海水。SO
4
2-
主要受黏性土中硫酸根还原作用的控制,而不受石膏沉淀作用的影响。浅层孔隙水中Ca
2+
、Na
+
在孔隙水演化过程中受到阳离子交替吸附作用影响,表现为Na
+
的亏损和Ca
2+
的富集。NH
4
+
主要与Mg
2+
发生交换作用,致使孔隙水中NH
4
+
增加。K
+
在孔隙水演化过程中受混合作用和吸附作用控制,表现出衰减特征。结合
14
C测年数据,在考虑沉积环境、沉积过程与沉积速率的基础上,以水文地球化学模拟软件PHREEQC构建了弱透水层Cl
-
一维溶质运移模型,模拟结果表明该区域弱透水层中存在垂向上的扩散作用,垂向对流速度十分缓慢,弱透水层的有效扩散系数约为6.0×10
-11
m
2
/s。
The Quaternary aquitard of the Pearl River Delta (PRD) overlies the basal confined aquifer, and its hydrogeochemical evolution process has a decisive influence on the basal aquifer. In order to understand the formation and evolution of pore water in the aquitard of the Pearl River Delta, this study analyzes the major ions (K
+
,Na
+
,Ca
2+
、Mg
2+
,Cl
-
,SO
4
2-
,Br
-
), hydrogeochemical parameters and mineral saturation index of pore water samples of the ZK01 borehole drilled in Zhongshan City. The results show that the salinity of pore water is relatively high and the TDS is between 4.42 and 30.47 g/L. The water chemistry of pore water is generally Cl-Na type, which is similar to seawater, and the concentrations of major ions tend to increase with the borehole depth. The Cl/Br,
γ
(Na/Cl) coefficients and Gibbs analysis show that the salinity of the aquitard pore water is mainly originated from seawater, and probably originated from Holocene seawater. Concentration of SO4
2-
is mainly controlled by sulfate reduction in the aquitard and not affected by the precipitation of gypsum. Ca
2+
and Na
+
in shallow pore water are affected by cation exchange,which causes Na
+
depletion and Ca
2+
enrichment. NH
4
+
mainly exchanges with Mg
2+
,resulting in the increase of NH
4
+
in pore water. K
+
is mainly controlled by mixing and adsorption during pore water evolution, showing depletion characteristics. Based on the
14
C dating data and taking the sedimentary environments, processes and rates under consideration, an one-dimensional solute transport model of the aquitard Cl
-
was established by using the hydrogeochemical simulation software PHREEQC. The simulation results show that the effective diffusion coefficient of the aquitard is about 6.0×10
-11
m
2
/s,the vertical convection velocity can be neglected, and diffusion is the key mechanism for vertical solute transport in the PRD Quaternary aquitard.
珠江三角洲弱透水层孔隙水化学溶质运移
the Pearl River Deltaaquitardpore water chemistrysolute transport
高茂生, 骆永明.我国重点海岸带地下水资源问题与海水入侵防控[J].中国科学院院刊,2016,31(10): 1197-1203.
刘彦,龚绪龙,李进,等.苏北海岸带浅部弱透水层孔隙水咸化过程[J].水资源与水工程学报,2021,32(1):57-62.
汤鸣皋,王亨君.岩土孔隙溶液成分研究的意义及应用探讨[J].勘察科学技术,1986(5):1-6.
李静,梁杏,毛绪美,等.水化学揭示的弱透水层孔隙水演化特征及其古气候指示意义[J].地球科学(中国地质大学学报),2012,37(3):612-620.
HENDRY M J, WASSENAAR L I. Controls on the distribution of major ions in pore waters of a thick surficial aquitard[J].Water Resources Research,2000,36(2): 503-513.
LI J,LIANG X,IN M,et al.Geochemical signature of aquitard pore water and its paleo-environment implications in Caofeidian Harbor,China[J].Geochemical Journal,2013,47(1):37-50.
LIU Y,MA T,CHEN J,et al.Contribution of clay-aquitard to aquifer iron concentrations and water quality[J].Science of the Total Environment,2020,741:1-11.
KUANG X X,JIAO J J,LIU K.Numerical studies of vertical Cl-, δ2H and δ18O profiles in the aquifer-aquitard system in the Pearl River Delta,China[J].Hydrological Processes,2015,29(19):4199-4209.
KUANG X X,JIAO J J,WANG Y.Chloride as tracer of solute transport in the aquifer-aquitard system in the Pearl River Delta,China[J].Hydrogeology Journal, 2016,24(5):1121-1132.
葛勤.沿海地区弱透水层孔隙水水化学形成与演化——以苏北平原为例[D].武汉:中国地质大学,2018.
HAN D M,CAO G L,CURRELL M J,et al. Groundwater salinization and flushing during glacial‐interglacial cycles: Insights from aquitard porewater tracer profiles in the North China plain[J].Water Resources Research,2020,56(11):1-23.
王亚,焦赳赳,陈建耀.珠江三角洲第四纪各地层生成与存储天然铵能力的探讨与对比[J].生态环境学报,2013,22(12):1909-1915.
JIAO J J,WANG Y,CHERRY J A,et al.Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta,China[J]. Environmental Science & Technology,2010,44(19): 7470-7475.
WANG Y, JIAO J J, CHERRY J A,et al.Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta,China[J].Science of the Total Environment,2013,461:663-671.
ZONG Y Q,HUANG G,SWITZER A D,et al.An evolutionary model for the Holocene formation of the Pearl River delta,China[J].The Holocene,2009,19(1):129-142.
吕晓立,刘景涛,韩占涛,等.快速城镇化进程中珠江三角洲硝酸型地下水赋存特征及驱动因素[J].环境科学,2021,42(10):4761-4771.
程焰,王亚,周永章,等.珠海市地下水系统中重金属和类金属污染状况与污染来源分析[J].矿物岩石地球化学通报,2019,38(3):595-603.
ZONG Y Q,YIM W W S,YU F, et al.Late Quaternary environmental changes in the Pearl River mouth region,China[J].Quaternary International,2009,206(1/2):35-45.
WEI X,WU C Y.Holocene delta evolution and sequence stratigraphy of the Pearl River Delta in South China[J].Science China Earth Sciences,2011,54(10):1523-1541.
WANG Y.Isotopic and hydrogeochemical studies of the coast aquifer-aquitard system in the Pearl River Delta,China[D].Hong Kong:The University of Hong Kong,2011.
李静,梁杏,靳孟贵.低渗透介质孔隙溶液的提取及其应用综述[J].水文地质工程地质,2012,39(4): 26-31.
沈照理,等.水文地球化学基础[M].2版.北京:地质出版社,1999.
KWONG H T,JIAO J J,LIU K,et al.Geochemical signature of pore water from core samples and its implications on the origin of saline pore water in Cangzhou, North China Plain[J].Journal of Geochemical Exploration,2015,157:143-152.
陈毅. 白洋淀流域平原区地下水-孔隙水的水化学特征和水文地球化学过程[D].北京:中国地质大学(北京),2018.
GIBBS R J.Mechanisms controlling world water chemistry[J].Science,1970,170(3962):1088-1090.
APPELO C A J, POSTMA D. Geochemistry,groundwater and pollution[M].USA:CRC Press,2004.
WANG Y, JIAO J J.Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta,China[J]. Journal of Hydrology,2012,438:112-124.
蓝先洪.珠江三角洲晚第四纪沉积物的有机地球化学特征[J].热带海洋,1991(1):13-20.
支兵发.珠江三角洲平原高铵地下水的形成演化[J].安全与环境工程, 2015,22(4):1-9.
WANG Y,JIAO J J,CHERRY J A.Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta,China[J]. Science of the Total Environment,2012,427: 286-297.
高宗军,刘久潭,李颖智, 等.拉萨河谷地区孔隙地下水水化学特征及水文地球化学模拟[J].山东科技大学学报(自然科学版),2020,39(1):1-10.
PARKHURST D L,APPELO C A J.Description of input and examples for PHREEQC version 3: A computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical calculations[R].US Geological Survey,2013.
ZHENG C M, BENNETT G D.Applied contaminant transport modeling[M].New York:Wiley-Interscience,2002.
WANG X S,JIAO J J,WANG Y,et al.Accumulation and transport of ammonium in aquitards in the Pearl River Delta(China) in the last 10 000 years: Conceptual and numerical models[J].Hydrogeology Journal, 2013,21(5):961-976.
TIMMS W A,HENDRY M J.Quantifying the impact of cation exchange on long-term solute transport in a clay-rich aquitard[J].Journal of Hydrology,2007, 332(1/2):110-122.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构