1.广州地铁设计研究院股份有限公司,广东 广州 510010
2.中山大学地球科学与工程学院,广东 珠海 519082
3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
4.广东省地球动力学作用与地质灾害重点实验室,广东 珠海 519082
刘成军(1978年生),男;研究方向:工程地质;E-mail: liuchengjun@gmdi.cn
刘恒光(1995年生),男;研究方向:三维地质模拟;E-mail: liuhg3@mail2.sysu.edu.cn;(侯卫生、刘恒光为共同通信作者)
侯卫生(1976年生),男;研究方向:三维地质模拟;E-mail: houwsh@mail.sysu.edu.cn
纸质出版日期:2022-01-25,
网络出版日期:2021-12-23,
收稿日期:2021-08-01,
录用日期:2021-10-20
扫 描 看 全 文
刘成军,刘恒光,侯卫生等.基于多点统计学的地质体三维重构及其在地铁工程中的应用[J].中山大学学报(自然科学版),2022,61(01):94-104.
LIU Chengjun,LIU Hengguang,HOU Weisheng,et al.3D geological reconstruction with multiple-point statistics and its application in metro station engineering[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):94-104.
刘成军,刘恒光,侯卫生等.基于多点统计学的地质体三维重构及其在地铁工程中的应用[J].中山大学学报(自然科学版),2022,61(01):94-104. DOI: 10.13471/j.cnki.acta.snus.2021D061.
LIU Chengjun,LIU Hengguang,HOU Weisheng,et al.3D geological reconstruction with multiple-point statistics and its application in metro station engineering[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):94-104. DOI: 10.13471/j.cnki.acta.snus.2021D061.
三维地质建模给出了地质对象更易于理解的空间透视图,有助于理解地下地质结构。然而,地铁工程所获得的地质数据具有数据量少、但局部密度高的特点,难以获取复杂地质对象空间分布模式。这也成为了构建大尺度、高精度三维模型的瓶颈之一。依托Extended GOSIM算法,构建了以空间模式相似度为变量的建模目标函数,结合二维钻孔地质剖面,提出了融合分级建模思想的地质结构多尺度三维重建方法。广州市轨道交通11号线某站点三维地质结构建模实例结果表明:分级建模的思路可以很好实现断裂中不同岩性结构的空间分布;本文所提出的方法能充分利用有限数据集所蕴含的地质对象间空间关系,有效重建地质对象高精度的三维空间模式,并为地铁工程设计、施工提供精细数据基础。
Three-dimensional modeling provides a spatial perspective of geological objects that helps the understanding of underground structures. In metro engineering, it is difficult to obtain the complex spatial patterns of geological blocks, because generally there are limited data available while many are locally distributed. It becomes a bottleneck in reconstructing large-scale 3D geological models with high precision. In this study, we proposed a multi-scale 3D reconstruction method of geological structures integrating the idea of hierarchical modeling based on the Extended GOSIM algorithm of multiple-point statistics (MPS) method, using 2D geological cross-sections as input data, and taking an objective function with spatial pattern similarity. As an example, the reconstruction of the 3D geological model of a metro station of Line 11 of Guangzhou Rail Transit illustrated that the hierarchical modeling successfully reconstructed the spatial structures of different lithology with faults. As the relationships among geological objectives are fully considered, the proposed method can reproduce the 3D spatial pattern of geological blocks with high precision using limited data. It can further be utilized for metro design and construction.
多点统计学分级建模三维地质模型地铁工程
multiple-point statisticshierarchy modeling3D geological modelingmetro engineering
HE H H, HE J, XIAO J Z, et al. 3D geological modeling and engineering properties of shallow superficial deposits: A case study in Beijing, China [J]. Tunnelling and Underground Space Technology, 2020, 100: 103390.
JIA R, LV Y K, WANG G W, et al. A stacking methodology of machine learning for 3D geological modeling with geological-geophysical datasets, Laochang Sn camp, Gejiu (China) [J]. Computers & Geosciences, 2021, 151: 104754.
PAN D D, XU Z H, LU X M, et al. 3D scene and geological modeling using integrated multi-source spatial data: Methodology, challenges, and suggestions [J]. Tunnelling and Underground Space Technology, 2020, 100: 103393.
ZHONG D H, WU H, WU B P, et al. 3-D fracture network dynamic simulation based on error analysis in rock mass of dam foundation [J]. Journal of Central South University, 2018, 25: 919-935.
郝英红, 李晓晖, 陈忠良, 等.城市地下空间开发地质环境质量三维评价方法研究——以合肥市滨湖新区为例[J]. 地理与地理信息科学, 2021, 37(1): 11-16.
朱良峰,李明江,孙建中. 工程地质空间多场耦合构模技术研究[J]. 岩土力学,2012,33(8): 2500-2506.
MARIETHOZ G, RENARD P,STRAUBHAAR J. The direct sampling method to perform multiple-point geostatistical simulations [J]. Water Resources Research, 2010, 46(11): W11536.
郭艳军, 潘懋, 燕飞, 等. 自然邻点插值方法在三维地质建模中的应用 [J]. 解放军理工大学(自然科学版), 2009, 10(6): 650-655.
王长虹, 朱合华. 多重分形与Kriging插值在地层模型生成中的应用[J]. 岩土力学, 2011, 32(6): 1864-1868.
孙波, 刘大安. 复杂地质界面三维重构与评价方法[J]. 岩石力学与工程学报, 2015, 34(3): 556-564.
孙英君, 王劲峰, 柏延臣. 地统计学方法进展研究[J]. 地球科学进展, 2004, 19(2): 268-274.
杨培杰. 地质统计学反演-从两点到多点[J]. 地球物理学进展, 2014, 29(5):2293-2300.
尹艳树, 张昌民, 李玖勇,等. 多点地质统计学研究进展与展望[J]. 古地理学报, 2011, 13(2): 245-253.
HU L Y, LIU Y, SCHEEPENS C, et al. Multiple-point simulation with an existing reservoir model as training image[J]. Mathematical Geosciences, 2014, 46(2): 227-240.
LI L P, SRINIVASAN S, ZHOU H Y, et al. Simultaneous estimation of geologic and reservoir state variables within an ensemble-based multiple-point statistic framework[J]. Mathematical Geosciences, 2014, 46: 597-623.
刘可可, 侯加根, 刘钰铭, 等. 多点地质统计学在点坝内部构型三维建模中的应用[J]. 石油与天然气地质, 2016, 37(4): 577-283.
张文彪, 段太忠, 刘志强, 等. 深水浊积水道多点地质统计模拟—以安哥拉Plutonio油田为例[J]. 石油勘探与开发, 2016, 43(3): 403-410.
KARIMPOULI S, TAHMASEBI P, RAMANDI H L, et al. Stochastic modeling of coal fracture network by direct use of microcomputed tomography images[J]. International Journal of Coal Geology, 2017, 179: 153-163.
CHEN Q Y, MARIETHOZ G, LIU G, et al. Locality-based 3-D multiple-point statistics reconstruction using 2-D geological cross-sections[J]. Hydrology and Earth System Sciences, 2018, 22: 6547-6566.
COMUNIAN A, GIUDICI M, LANDONI L, et al. Improving Bowen-ratio estimates of evaporation using a rejection criterion and multiple-point statistics[J]. Journal of Hydrology, 2018, 563: 43-50.
张弛, 陈干, 吴剑锋, 等. 基于多点地质统计的二维裂隙网络溶质运移模拟[J]. 南京大学学报(自然科学版), 2016, 52(3): 456-463.
TANG Y W, ATKINSON M P, ZHANG J X. Downscaling remotely sensed imagery using area-to-point cokriging and multiple-point geostatistical simulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101: 174-185.
ZHANG T, DU Y, LU F. Super-resolution reconstruction of remote sensing images using multiple-point statistics and isometric mapping[J]. Remote Sensing, 2017, 9: 724.
BOUCHER A, COSTA J, RASERA L, et al. Simulation of geological contacts from interpreted geological model using multiple-point statistics[J]. Mathematical Geosciences, 2014, 46(5): 561-572.
HOU W S, LIU H G, ZHENG T C, et al. Hierarchical MPS-based three-dimensional geological structure reconstruction with two-dimensional image(s) [J]. Journal of Earth Science, 2021, 32(2): 445-467.
TAHMASEBI P, SAHIMI M, ANDRADE J E. Image-based modeling of granular porous media [J]. Geophysics Research Letter, 2017, 44(10):4738-4746.
WU Y Q, LIN C Y, REN L H, et al. Reconstruction of 3D porous media using multiple-point statistics based on a 3D training image [J]. Journal of Natural Gas Science and Engineering, 2018, 51: 129-140.
刘磊, 姚军, 孙海, 等. 考虑微裂缝的数字岩心多点统计学构建方法[J]. 科学通报,2018,63(30): 3146-3157.
STREBELLE S. Conditional simulation of complex geological structures using multiple-point statistics [J]. Mathematical Geology, 2002, 34(1): 1-21.
DIMITRAKOPOULOS R, MUSTAPHA H, GLOAGUEN E. High-order statistics of spatial random fields: exploring spatial cumulants for modeling complex non-Gaussian and non-linear Phenomena [J]. Mathematical Geosciences, 2010, 42(1): 65-99.
YAO L Q, DIMITRAKOPOULOS R, GAMACHE M. Learning high-order spatial statistics at multiple scales: A kernel-based stochastic simulation algorithm and its implementation [J/OL]. Computers & Geosciences, 2021, 149. https://doi.org/10.1016/j.cageo.2021.104702https://doi.org/10.1016/j.cageo.2021.104702.
STRAUBHAAR J, RENARD P, MARIETHOZ G, et al. An improved parallel multiple-point algorithm using a list approach [J]. Mathematical Geosciences, 2011, 43(7): 305-328.
YANG L, HOU W S, CUI C J, et al. GOSIM: A multi-scale iterative multiple-point statistics algorithm with global optimization [J]. Computers & Geosciences, 2016, 89: 57-70.
HONARKHAH M, CAERS J. Stochastic simulation of patterns using distance-based pattern modeling [J]. Mathematical Geosciences, 2010, 42(5): 487-517.
ZHANG T, SWITZER P, JOURNEL A. Filter-based classification of training image patterns for spatial simulation [J]. Mathematical Geology, 2006, 38 (1): 63-80.
ARPAT G, CAERS J. Conditional simulation with patterns [J]. Mathematical Geology, 2007, 39(2): 177-203.
TAHMASEBI P, SAHIMI M, CAERS J. MS-CCSIM: accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space [J]. Computers & Geosciences, 2014, 67: 75-88.
郑天成,侯卫生,何思彤. 基于二维地质剖面的三维地质结构多点统计学模拟方法 [J]. 吉林大学学报(地球科学版),2019,49(5):1496-1506.
ARPAT G B. Sequential simulation with patterns [D]. San Francisco: Stanford University, 2005.
KWATRA V, ESSA I, BOBICK A, et al. Texture optimization for example-based synthesis [J]. ACM Transactions on Graphics, 2005, 24(3): 795-802.
McLACHLAN G J, KRISHNAN T. The EM algorithm and extensions [J]. Biometrics, 2008, 15(1): 154-156.
HAMMING R W. Error detecting and error correcting codes[J]. Bell System Tech, 1950, 29(2): 147-160.
广东省地质矿产局. 1∶5万广州幅综合区域地质调查报告[R]. 1989.
HOU W S, YANG Q C, CHEN X W, et al. Uncertainty analysis and visualization of geological subsurface and its application in metro station construction[J/OL]. Frontiers of Earth Science, 2021. https://doi.org/10.1007/s11707-021-0897-6https://doi.org/10.1007/s11707-021-0897-6.
李静荣, 邬巧胜, 刘胜. 广州轨道交通二、八号线延长线江泰路站断裂特征研究及工程措施建议[J]. 广州建筑,2006(6):28-32.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构