1.中山大学地理科学与规划学院,广东 广州 510006
2.澳大利亚核科学与技术组织,澳大利亚 悉尼 NSW2052
3.中国地质科学院水文地质环境地质研究所,河北 石家庄 050061
4.中国科学技术大学合肥微尺度物质科学国家研究中心,安徽 合肥 230027
5.日本国立农研机构,日本 筑波 305-8517
6.德国海德堡大学环境物理研究院,德国 海德堡 69120
7.广东海洋大学海洋与气象学院,广东 湛江 524088
8.广东省水文局湛江水文分局,广东 湛江 524043
9.中国科学院华南植物园,广东 广州 510650
李绍恒(1994年生),男;研究方向:水文地质学、环境同位素;E-mail:lishh6@mail2.sysu.edu.cn
陈建耀(1966年生),男;研究方向:环境水文学、水文地质学;E-mail:chenjyao@mail.sysu.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2021-12-24,
收稿日期:2021-08-02,
录用日期:2021-09-02
扫 描 看 全 文
李绍恒,陈建耀,CENDÓN I Dioni等.基于多同位素联用的雷州半岛中深层地下水年龄初探[J].中山大学学报(自然科学版),2022,61(04):95-103.
LI Shaoheng ,CHEN Jianyao ,CENDÓN I Dioni ,et al.Preliminary study on the age of groundwater in the middle and deep aquifers of Leizhou Peninsula based on multi-isotopes[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):95-103.
李绍恒,陈建耀,CENDÓN I Dioni等.基于多同位素联用的雷州半岛中深层地下水年龄初探[J].中山大学学报(自然科学版),2022,61(04):95-103. DOI: 10.13471/j.cnki.acta.snus.2021D059.
LI Shaoheng ,CHEN Jianyao ,CENDÓN I Dioni ,et al.Preliminary study on the age of groundwater in the middle and deep aquifers of Leizhou Peninsula based on multi-isotopes[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):95-103. DOI: 10.13471/j.cnki.acta.snus.2021D059.
地下水年龄是一项重要的水文地质参数,其在识别地下水补给来源,评价地下水可更新能力,研究地下水溶质迁移和地下水模型率定及古气候反演等方面可发挥关键作用。本文通过对雷州半岛中深层地下水进行样品采集与
3
H、
4
He、
13
C、
14
C等同位素测试分析,结合Han-Plummer图形法及同位素校正模型,研究发现从补给区到排泄区地下水年龄逐渐增加,绝大部分地下水样品的
14
C校正年龄介于1 037~40 310 aBP,过半地下水样品的校正年龄超过了10 000 aBP。地下水样品中的
4
He同位素含量与
14
C年龄呈现显著的正相关关系,可根据
4
He同位素累积率粗略估算地下水年龄。另外,对于不同年龄区段的地下水,电导率与
14
C校正年龄的关系不同,较年轻地下水年龄与电导率之间明显的正相关关系也为简单估算地下水年龄提供了一种间接方法。
Groundwater age is an important hydrogeological parameter, associated closely with indentification of groundwater recharge sources, groundwater renewability, groundwater solute migration, and reconstruction of palaeoclimatic signals. In this paper, nineteen groundwater samples were collected to analyze
3
H,
4
He,
13
C,
14
C from both middle and deep layers of Leizhou Peninsula . Based on the Han-Plummer graphic method and isotope correction model, the apparent age of groundwater was found ranging from 1 037 aBP to 40 310 aBP with approximately half of sampling sites exceeding 10 000 aBP, and increasing gradually from the recharge area in the Shimaoling and Luogangling to the discharge area in the coastal zone. The
4
He isotope content in groundwater samples has a significant positive correlation with the
14
C age, and the groundwater age can thus be roughly estimated based on the accumulation rate of
4
He isotope. In addition, three stages were classified for the relationship between electrical conductivity (EC) and
14
C corrected age, yielding an obvious linearity when the apparent age was younger than 6800 aBP, which could then be used to estimate groundwater age with a known EC.
雷州半岛地下水年龄同位素14C定年4He定年
Leizhou Peninsulagroundwater ageisotope14C dating4He dating
GLEESON T, VANDERSTEEN J,SOPHOCLEOUS M A, et al.Groundwater sustainability strategies[J].Nature Geoscience,2010,3(6):378-379.
TAYLOR R G, SCANLON B, DÖLL P, et al. Ground water and climate change [J].Nature Climate Change, 2013,3(4): 322-329.
BETHKE C M, JOHNSON T M. Groundwater age and groundwater age dating [J]. Annual Review of Earth and Planetary Sciences,2008,36(1):121-152.
SUCKOW A. The age of groundwater — Definitions, models and why we do not need this term [J]. Applied Geochemistry, 2014, 50: 222-230.
CARTWRIGHT I,CURRELL M J,CENDÓN D I,et al. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas [J]. Journal of Hydrology, 2020,580: 124247.
MA H, YANG Q, YIN L, et al. Paleoclimate interpretation in northern Ordos Basin: Evidence from isotope records of groundwater[J]. Quaternary International, 2018, 467: 204-209.
黄冠星,孙继朝,齐继祥,等. 鄂尔多斯地下水同位素组成与气候变化关系[J].地球学报,2007(6):550-554.
漆继红,许模,张强,等. 西藏盐井地区盐泉同位素特征示踪研究[J].地球与环境,2008(3):237-244.
杨丽芝,张光辉,胡乃松,等. 利用环境同位素信息识别鲁北平原地下水的补给特征[J].地质通报,2009,28(4):515-522.
翟远征,王金生,左锐,等. 地下水年龄在地下水研究中的应用研究进展[J].地球与环境,2011,39(1):113-120.
LU Z T, SCHLOSSER P, SMETHIE W M, et al. Tracer applications of noble gas radionuclides in the geosciences [J]. Earth Science Reviews, 2014, 138: 196-214.
JIANG W, WANG G, SHENG Y, et al. Isotopes in groundwater(2H,18O,14C) revealed the climate and groundwater recharge in the Northern China [J].Science of the Total Environment,2019, 666: 298-307.
KREUZER A M, von ROHDEN C, FRIEDRICH R, et al. A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain [J].Chemical Geology,2009,259(3/4): 168-180.
WEI W, AESCHBACH-HERTIG W, CHEN Z. Identification of He sources and estimation of He ages in groundwater of the North China Plain [J]. Applied Geochemistry, 2015, 63: 182-189.
CHEN Z Y, QI J X, XU J M, et al. Paleoclimatic interpretation of the past 30 ka from isotopic studies of the deep confined aquifer of the North China plain [J]. Applied Geochemistry, 2003, 18(7): 997-1009.
EDMUNDS W M, MA J, AESCHBACH-HERTIG W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China [J].Applied Geochemistry,2006,21(12): 2148-2170.
何建华,凌新颖,马金珠.我国河西走廊典型盆地深层地下水14C年龄分布特征[J].甘肃水利水电技术,2018,54(2):1-4.
黄晓梅,简茂球,刘桂兴.雷州半岛干旱的特征及其环流分析[J].广东气象,2013,35(3):20-24.
王壬,陈建耀,江涛,等.近30年雷州半岛季节性气象干旱时空特征[J].水文,2017,37(3):36-41.
张得胜,江涛,黎坤,等.基于Copula函数的雷州半岛气象干旱风险分析[J].人民珠江,2019,40(9):110-120.
张国梅,劳浣冰,陈丽芬,等. 雷州半岛1∶20万区域水文地质普查报告[R]. 广州:广东省地质局, 1981.
LI S, DONG L, CHEN J, et al. Vertical groundwater flux estimation from borehole temperature profiles by a numerical model, RFLUX [J]. Hydrological Processes, 2019, 33(11): 1542-1552.
温汉辉. 雷州半岛地下水循环规律及合理开发利用研究[D].武汉:中国地质大学(武汉),2013.
AESCHBACH-HERTIG W, SOLOMON D K. Noble gas thermometry in groundwater hydrology [M]//BURNARD P,ed. The noble gases as geochemical tracers. Berlin: Springer, 2013.
卫文,陈宗宇.地下水中的惰性气体古气候研究进展[J].水利水电科技进展,2016(6):8-14.
CLARK I D, FRITZ P. Environmental isotopes in hydrogeology[M]. Boca Raton: CRC press, 1997.
陈彭,王威,马震,等.河北省唐山市陡河流域地下水年龄评价[J].地质调查与研究,2014(4):288-293.
MÜLLER T, OSENBRÜCK K, STRAUCH G, et al. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman [J].Applied Geochemistry,2016, 74: 67-83.
KUTSCHERA W. Accelerator mass spectrometry: State of the art and perspectives [J]. Advances in Physics, 2016, 1(4): 570-595.
SYNAL H A.Developments in accelerator mass spectrometry [J].International Journal of Mass Spectrometry, 2013, 349/350: 192-202.
HAN L F, PLUMMER L N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater [J].Earth-Science Reviews,2016,152: 119-142.
HALDORSEN S, van der PLOEG M , CENDON D, et al. Groundwater and global palaeoclimate signals(G@GPS)[J]. Episodes, 2016, 39(4): 556-567.
TÓTH J. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations [J]. Hydrogeology Journal, 1999, 7(1): 1-14.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构