中山大学地理科学与规划学院,广东 广州 510006
孟越(1997年生),女;研究方向:水文水资源;E-mail:mengy36@mail2.sysu.edu.cn
王大刚(1975年生),男;研究方向:陆面过程模拟;E-mail:wangdag@mail.sysu.edu.cn
纸质出版日期:2022-09-25,
网络出版日期:2022-01-27,
收稿日期:2021-07-08,
录用日期:2021-08-16
扫 描 看 全 文
孟越,王大刚,林泳恩等.SMOS和SMAP卫星土壤水分产品的对比评价与差异分析[J].中山大学学报(自然科学版),2022,61(05):9-21.
MENG Yue,WANG Dagang,LIN Yongen,et al.Comparative evaluation and difference analysis of SMOS and SMAP satellite remote sensing soil moisture products[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):9-21.
孟越,王大刚,林泳恩等.SMOS和SMAP卫星土壤水分产品的对比评价与差异分析[J].中山大学学报(自然科学版),2022,61(05):9-21. DOI: 10.13471/j.cnki.acta.snus.2021D049.
MENG Yue,WANG Dagang,LIN Yongen,et al.Comparative evaluation and difference analysis of SMOS and SMAP satellite remote sensing soil moisture products[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):9-21. DOI: 10.13471/j.cnki.acta.snus.2021D049.
为了对比分析SMOS(soil moisture and ocean salinity)和SMAP(soil moisture active passive)遥感产品土壤含水量数据的质量与精度,本文基于来自美国本土的3种测站网络CRN(climate reference network)、SCAN(soil climate analysis network)和SNOTEL(snowpack telemetry network)的261个站点实测数据,从整体与分站点两个角度进行评价,并探究影响二者表现差异的不同影响因子。结果表明:① 对两种卫星遥感水分产品进行整体评价或按照站点进行评价时,SMAP表现均优于SMOS;② 同一土壤水分产品在不同土地覆盖类型下的精度差异较大,不同土壤水分产品对于同种土地覆盖类型的响应不同;③ 季节变化下温度和降水变化,从而影响卫星反演精度;④ 地形与海拔变化也会引起卫星产品反演水平的变化,随着海拔高度升高,卫星观测的准确性降低。综合来看,目前直接利用卫星观测获取的土壤含水量与实测值之间仍存在一定差异,未来我们应进一步提高卫星观测数据的准确性。
To compare and evaluate the quality and accuracy of soil moisture data of SMOS (soil moisture and ocean salinity) and SMAP (soil moisture active passive) remote sensing products
using the actual measurement of 261 stations from three types of stations in the United States
i.e.
CRN (climate reference network)
SCAN (soil climate analysis network)
and SNOTEL (snowpack telemetry network)
the different influencing factors that affect the performance were explored from the perspectives of the whole and the individual sites. The results show that: 1) When the two satellite remote sensing moisture products are evaluated as a whole or according to sites
SMAP performs better than SMOS. 2) The accuracy of the same soil moisture product varies greatly under different land cover types; different soil moisture products have different responses to the same land cover type. 3) The temperature and precipitation changes under seasonal changes
which affect the accuracy of satellite inversion. 4) The terrain and altitude changes also cause changes in the inversion level of satellite products. As the altitude increases
the accuracy of satellite observations decreases. In general
there is still some difference between the soil moisture directly obtained from satellite observation and the station data. In the future
we should further improve the accuracy of satellite observation data.
土壤含水量土壤水分卫星遥感产品对比评价差异分析
soil moisturesatellite remote sensing soil moisture productscomparative evaluationdifference analysis
FALLOON P, JONES C D, ADES M, et al. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty[J]. Global Biogeochemical Cycles,2011,25(3).
DALY E, PORPORATO A. A review of soil moisture dynamics:From rainfall infiltration to ecosystem response[J]. Environmental Engineering Science,2005,22(1):9-24.
DOUVILLE H, CHAUVIN F. Relevance of soil moisture for seasonal climate predictions: A preliminary study[J].Climate Dynamics,2000,16(10/11):719-736.
SCHMUGGE T, GLOERSEN P, WILHEIT T, et al. Remote sensing of soil moisture with microwave radiometers[J]. Journal of Geophysical Research,1974,79(2):317-323.
PAUWELS V R N, HOEBEN R, VERHOEST N E C, et al. The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation[J]. Journal of Hydrology,2001,251(1):88-102.
姚其华,邓银霞. 土壤水分特征曲线模型及其预测方法的研究进展[J]. 土壤通报,1992(3):142-145.
ARYA L M, PARIS J F. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal,1981,45(6):1023-1030.
CUI H, JIANG L, DU J, et al.Evaluation and analysis of AMSR-2,SMOS, and SMAP soil moisture products in the Genhe area of China[J]. Journal of Geophysical Research Atmospheres,2017,122(16):8650-8666.
AL-YAARI A, WIGNERON J P, KERR Y, et al. Testing regression equations to derive long-term global soil moisture datasets from passive microwave observations[J]. Remote Sensing of Environment,2016,180:453-464.
KERR Y H, WIGNERON J P,DELWART S, et al. The SMOS mission: new tool for monitoring key elements of the global water cycle[J]. The Proceedings of IEEE,2010,98(5):666-687.
KERR Y H, WALDTEUFEL P, RICHAUME P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience & Remote Sensing,2012,50(5):1384-1403.
KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. Soil moisture retrieval from space: the soil moisture and ocean salinity (SMOS) mission[J]. IEEE Transactions on Geoscience & Remote Sensing,2002,39(8):1729-1735.
NJOKU E G, JACKSON T J, LAKSHMI V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions Geoscience & Remote Sensing,2003,41(2):215-229.
WANG J R, CHOUDHURY B J.Remote sensing of soil moisture content,over bare field at 1.4 GHz frequency[J]. Journal of Geophysical Research Oceans,1981,86(C6):5277-5282.
KERR Y H. Soil moisture from space: Where are we?[J]. Hydrogeology Journal,2007,15(1):117-120.
OWE M, VAN D G A A. Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing[J]. Water Resources Research,1998,34(9):2319-2327.
ENTEKHABI D,REICHLE R H,KOSTER R D,et al.Performance metrics for soil moisture retrievals and application requirements[J]. Journal of Hydrometeorology,2009,11(3):832-840.
GONZALEZ-ZAMORA A, SANCHEZ N, MARTINEZ-FERNANDEZ J,et al. Validation of SMOS and Aquarius soil moisture using two in situ networks in Spain[C]//2015 IEEE International Geoscience and Remote Sensing Symposium(IGARSS):4738-4741.
ZENG J, CHEN K S, BI H, et al. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(8):4929-4940.
CUI H, JIANG L, DU J, et al. Evaluation and analysis of AMSR-2,SMOS,and SMAP soil moisture products in the Genhe area of China[J]. Journal of Geophysical Research Atmospheres,2017,122(16):8650-8666.
杨娜,崔慧珍,向峰. SMOS L2土壤水分数据产品在我国农区的验证[J]. 河南理工大学学报(自然科学版),2015,34(2):287-291.
白瑜,孟治国,赵凯,等. 像元尺度土壤水分监测网络及其对L波段土壤水分产品的初步验证结果[J]. 遥感技术与应用,2018,33(1):78-87.
FENG X, LI J, CHENG W,et al.Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China[J]. Remote Sensing of Environment,2017,196:253-264.
CUI C, XU J, ZENG J, et al. Soil moisture mapping from satellites: an intercomparison of SMAP, SMOS,FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales[J].Remote Sensing,2018,10(1):33-51.
JACKSON T J, COSH M H, BINDLISH R, et al. Validation of advanced microwave scanning radiometer soil moisture products[J]. IEEE Transactions on Geoscience & Remote Sensing,2010,48(12):4256-4272.
李瑞娟,李兆富,郝睿,等.亚洲区域AMSR2与SMOS土壤水分产品对比研究[J]. 遥感技术与应用,2019,34(1):125-135.
CHEN Y, YANG K, QIN J, et al. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres,2017,122(11):5780-5792.
陈泓羽,吴静,李纯斌,等.卫星土壤水分产品在青藏高原地区的适用性评价[J]. 生态学报,2020,40(24):9195-9207.
KERR Y, PHILIPPE W, WIGNERON J, et al. The SMOS mission: new tool for monitoring key elements ofthe global water cycle[J]. Proceedings of the IEEE,2010,98(5):666-687.
陈勇强,杨娜,胡新,等. SMOS与SMAP过境时段表层土壤水分的稳定性研究[J]. 遥感技术与应用,2020,35(1):58-64.
KERR Y H, WALDTEUFEL P, RICHAUME P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience & Remote Sensing,2012,50(5):1384-1403.
KERR Y H,WALDTEUFEL P,WIGNERON J P,et al.The SMOS mission: new tool for monitoring key elements ofthe global water cycle[J]. Proceedings of the IEEE,2010,98(5):666-687.
O'NEILL P, CHAN S, YUEH S, et al. evaluation of the validated soil moisture product from the SMAP radiometer[J]. IEEE Transactions on Geoscience & Remote Sensing,2016,98(5):125-128.
BENESTY J, CHEN J, HUANG Y, et al. Pearson correlation coefficient[M]//Noise Reduction in Speech Processing. Heidelberg: Springer,2009:1-4.
WANG W, LU Y. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model[C]// IOP Conference Series Materials Science and Engineering,2018,324(1):012049.
ENTEKHABI D, REICHLE R H, KOSTER R D, et al. Performance metrics for soil moisture retrievals and application requirements[J]. Journal of Hydrometeorology,2010,11(3):832-840.
STENSRUD E, FOSS T, KITCHENHAM B, et al. An empirical validation of the relationship between the magnitude of relative error and project size[C]//Proceedings of 8th IEEE Symposium on Software Metrics.Ottawa,Canada,2002.
NOSSENT J, BAUWENS W. Application of a normalized Nash-Sutcliffe efficiency to improve the accuracy of the Sobol' sensitivity analysis of a hydrological model[C]//Geophysical Research Abstracts.Vienna,Austria,2012.
LAUW H W, LIM E, WANG K. Bias and controversy: beyond the statistical deviation[C]//Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia,USA,2006.
刘强,杜今阳,施建成,等. 青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析[J]. 中国科学:地球科学,2013(10):1677-1690.
张钟军,孙国清,朱启疆. 植被层对被动微波遥感土壤水分反演影响的研究[J]. 遥感学报,2004,8(3):207-213.
王定文,黄春林,顾娟. 干旱区地表L波段微波辐射特性分析:穿透深度的影响[J]. 遥感技术与应用,2016,31(3):580-589.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构