1.中国民用航空飞行学院机场工程与运输管理学院,四川 广汉 618307
2.中国民用航空飞行学院科研基地,四川 广汉 618307
吴宜耽(1996年生),女;研究方向:交通运输系统优化;E-mail:wuyidan513@163.com
孙宏(1966年生),男;研究方向:航空规划与管理;E-mail:hanksun@263.net
纸质出版日期:2022-09-25,
网络出版日期:2022-04-01,
收稿日期:2021-07-01,
录用日期:2021-08-05
扫 描 看 全 文
吴宜耽,孙宏,张培文等.全球国际航空网络结构的复杂性及其社团特征[J].中山大学学报(自然科学版),2022,61(05):22-30.
WU Yidan,SUN Hong,ZHANG Peiwen,et al.On the structural complexity and community characteristics of global international aviation network[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):22-30.
吴宜耽,孙宏,张培文等.全球国际航空网络结构的复杂性及其社团特征[J].中山大学学报(自然科学版),2022,61(05):22-30. DOI: 10.13471/j.cnki.acta.snus.2021D048.
WU Yidan,SUN Hong,ZHANG Peiwen,et al.On the structural complexity and community characteristics of global international aviation network[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):22-30. DOI: 10.13471/j.cnki.acta.snus.2021D048.
运用复杂网络理论分析全球国际航空网络的结构复杂性,以Newman快速算法对网络中的城市进行社团识别和划分,并结合社团结构理论深入分析其内部结构特性。研究发现:全球国际航空网络的度和度分布空间差异明显,平均路径长度较短且聚类系数较大,紧密中心度绝对差距和相对差距较小,中介中心度分布函数呈幂函数形态。网络中的城市被划分为18个社团,规模差异大,地理位置相邻近的城市更容易形成同一社团,但也有部分城市表现出远距离相互作用。各大洲的社团边界清晰且种类分明,唯独欧洲的社团边界模糊且种类过多。结果表明:全球国际航空网络具有“无标度网络”和“小世界网络”特征,网络由少量高度值城市主导,网络聚集性较强且全局效率高。少部分城市承担了主要中介功能,大部分城市几乎没有中介能力。网络的社团规模存在显著异质性,分布具有明显的地理集群特征,但地理位置邻近的城市航空联系未必紧密。大规模社团内部连通性更好,小规模社团内部网络密度更大。各大洲的国际航空市场结构稳定,而欧洲尚未形成稳定的航空联系。
The complex network theory is used to analyze the structural complexity of the global international aviation network, and the internal structural characteristics of the global international aviation network are analyzed with the community structure theory by using the Newman fast algorithm to identify and divide cities in the network. The results show that the degree and the distribution of the global international aviation network have spatial differences; the average path length is short and the clustering coefficient is large; the absolute and relative gaps of tight centrality are small; the intermediate centrality distribution function is a power function. Cities in the network are divided into 18 communities with great scale differences. Cities with close geographical locations are more likely to form the same community, but some cities also show long-distance interaction. The boundaries of communities on all continents are distinct, while many boundaries are fuzzy and various inside Europe. It indicates that the global international aviation network has the characteristics of "scale-free network" and "small-world network", and the network is dominated by a small number of high degree value cities, with strong aggregation and high global efficiency. A few cities assume the main intermediary function, and most cities have almost no transit capacity. There is significant heterogeneity in the scale of community networks, and the distribution of community networks has obvious characteristics of geographical clusters, but the geographical proximity of cities may not be closely connected. Large groups have better internal connectivity, while small groups have higher internal network density. The international aviation market structure on all continents is stable, while Europe has not yet formed a stable aviation connection.
复杂网络全球国际航空网络社团划分Newman快速算法
complex networkglobal international aviation networkcommunity divisionNewman fast algorithm
HOSSAIN M, ALAM S. A complex network approach towards modeling and analysis of the Australian Airport Network[J].Journal of Air Transport Management, 2017, 60:1-9.
GUIDA M , MARIA F. Topology of the Italian airport network: A scale-free small-world network with a fractal structure[J]. Chaos, Solitons and Fractals, 2007(31):527-536.
莫辉辉, 金凤君, 刘毅, 等. 机场体系中心性的网络分析方法与实证[J].地理科学,2010, 30(2):204-212.
卓志强, 姚红光. “一带一路”沿线航空网络结构及其鲁棒性研究[J]. 物流科技, 2018, 41(5): 78-84.
BARRAT A, BARTHELEMY M, VESPIGNANI A . The effects of spatial constraints on the evolution of weighted complex networks[J]. Journal of Statistical Mechanics: Theory & Experiment, 2005(5): 1-20.
MATSUMOTO H . International air network structures and air traffic density of world cities[J]. Transportation Research Part E , 2007(43): 269-282.
LIN J , BAN Y . The evolving network structure of US airline system during 1990-2010[J]. Physica A: Statistical Mechanics and its Applications, 2014, 410: 302-312.
BAGLER G . Analysis of the airport network of India as a complex weighted network[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387: 2972-2980.
HOLSMAN A J . The structure of Australian air networks[J]. Geographical Research, 1977, 15: 53-65.
王姣娥, 莫辉辉. 中国航空网络演化过程的复杂性研究[J]. 交通运输系统工程与信息, 2014, 14(1): 71-80.
张翼, 黄伟刚, 郑兴无. 中国航空枢纽城市的国际连通性研究[J]. 世界地理研究, 2020, 29(3): 491-502.
蒲亚琼. 我国西部地区航空网络结构研究[J]. 综合运输, 2019, 41(3): 18-22+53.
陈欣, 李心茹, 盛寅. 基于复杂网络的长三角航线网络结构特征分析[J]. 交通信息与安全, 2020, 38(4): 139-146.
党亚茹, 周莹莹, 王莉亚, 等. 基于复杂网络的国际航空客运网络结构分析[J]. 中国民航大学学报, 2009, 27(6): 41-44.
WOOLEY-MEZA O, THIEMANN C, GRADY D, et al. Complexity in human transportation networks: A comparative analysis of worldwide air transportation and global cargo-ship movements[J]. European Physical Journal B, 2011, 84: 589-600.
戈佳威, 王学锋, 万征, 等. 世界集装箱海运网络社团结构研究[J]. 交通运输系统工程与信息, 2019, 19(6): 231-236.
WATTS DJ , STROGATZ SH . Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393: 440-442.
焦敬娟, 王姣娥. 海航航空网络空间复杂性及演化研究[J].地理研究, 2014, 33(5): 926-936.
BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
刘望保, 韩茂凡, 谢智豪. 全球航线数据下世界城市网络的连接性特征与社团识别[J]. 经济地理, 2020, 40(1): 34-40+49.
刘宏鲲, 周涛. 中国城市航空网络的实证研究与分析[J]. 物理学报, 2007, 56(1): 106-112.
莫辉辉, 金凤君, 刘毅, 等. 机场体系中心性的网络分析方法与实证[J].地理科学, 2010, 30(2): 204-212.
NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2003, 69: 1-16.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构