1.中国科学院深海科学与工程研究所 / 海南省海底资源与探测技术重点实验室, 海南 三亚 572000
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
3.中国科学院大学,北京 100049
4.中国地质调查局海口海洋地质调查中心,海南 海口 571127
陈俊锦(1996年生),男;研究方向:深水沉积;E-mail:chenjj@idsse.ac.cn
吴时国(1963年生),男;研究方向:海底构造、深水油气和天然气水合物;E-mail:swu@idsse.ac.cn
纸质出版日期:2022-01-25,
网络出版日期:2021-09-18,
收稿日期:2021-07-03,
录用日期:2021-08-19
扫 描 看 全 文
陈俊锦,刘时桥,汪斯毓等.中沙海槽重力流沉积发育特征及成因机制[J].中山大学学报(自然科学版),2022,61(01):39-54.
CHEN Junjin,LIU Shiqiao,WANG Siyu,et al.Characteristics and mechanism of the development of gravity flow deposits in Zhongsha Trough[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):39-54.
陈俊锦,刘时桥,汪斯毓等.中沙海槽重力流沉积发育特征及成因机制[J].中山大学学报(自然科学版),2022,61(01):39-54. DOI: 10.13471/j.cnki.acta.snus.2021D044.
CHEN Junjin,LIU Shiqiao,WANG Siyu,et al.Characteristics and mechanism of the development of gravity flow deposits in Zhongsha Trough[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):39-54. DOI: 10.13471/j.cnki.acta.snus.2021D044.
深海重力流沉积是沉积物在重力作用下沿大陆架、大陆坡或岛坡向深海盆地搬运的重要沉积过程,在“源-汇”研究中占有重要地位,且与油气和天然气水合物成藏具有密切关系。根据新采集的二维多道地震数据,对中沙海槽开展了层序地层学研究,分析了中沙海槽重力流的地震相和时空分布特征,结合区域构造和沉积背景,讨论了中沙海槽重力流沉积的成因机制。研究表明,中沙海槽内沉积地层可以划分出Sq1 (古近系)、Sq2(下中新统)、Sq3 (中中新统)、Sq4 (上中新统)、Sq5 (上新统)和Sq6(第四系)等6个地震层序。中沙海槽重力流沉积的发育时期具有差异性:中沙海槽南部的重力流沉积主要发育于晚中新世至今,在晚中新世和上新世发育范围较广,且于上新统和第四系识别出了多期块体搬运沉积体系(MTD1-8);而中沙海槽北部的重力流沉积主要发育于早中新世和中中新世,晚中新世至今由于中沙台地北部的台地后退使其主要发育等深流沉积。中沙海槽重力流沉积的发育主要受沉积物来源、相对海平面变化、碳酸盐生产力和岩浆活动等因素的共同控制。该研究结果有助于进一步提高碳酸盐台地周缘重力流沉积规律的认识,为中沙海槽油气勘探和地质灾害评估提供参考。
Deep-sea gravity flow deposition is an important sedimentary process for sediments to be transported along the shelf and slope to the deep-sea basin under the drive of gravity. It plays an important role in the “source-sink” study and is closely related to the formation of oil-gas and gas hydrate. Based on the newly acquired two-dimensional multichannel seismic data, the sequence stratigraphy of the Zhongsha Trough is studied, the seismic facies characteristics and temporal and spatial distribution characteristics of gravity flow deposits are analyzed, and the genetic mechanism of gravity flow deposits is discussed in conjunction with the regional tectonic and sedimentary background. It shows that the sedimentary strata of Zhongsha Trough can be divided into 6 seismic sequences, included Sq1 (Paleogene), Sq2 (Lower Miocene), Sq3 (Middle Miocene), Sq4 (Upper Miocene), Sq5 (Pliocene), and Sq6 (Quaternary). The temporal development of gravity flow deposits is different for the south and north parts. In the southern part, they were mainly developed from the Late Miocene to the present and developed extensively in the Late Miocene and the Pliocene; moreover, multiple phases of mass transport deposits (MTD1-8) have been identified in the Pliocene and Quaternary. While in the northern part, gravity flow deposits were mostly developed during the Early Miocene and the Middle Miocene; from the Late Miocene to the present, due to the retreat of the northern part of the Zhongsha Platform, only contour deposits developed. The factors affecting gravity flow deposits in the Zhongsha Trough include sediment sources, relative sea-level changes, high carbonate productivity, and magmatic activity. The results of this study contribute to the understanding of the gravity flow deposition around the carbonate platform in the deep-water area and provide references for oil-gas exploration and geological hazard assessment in the region.
重力流沉积发育特征成因机制碳酸盐台地中沙海槽
gravity flow depositsdevelopmental characteristicsgenetic mechanismscarbonate platformZhongsha Trough
WEIMER P. Sequence stratigraphy of the Mississippi fan(Plio-Pleistocene),Gulf of Mexico[J]. Geo-Marine Letters, 1989, 9(4):185-272.
FREY-MARTÍNEZ J, CARTWRIGHT J, JAMES D. Frontally confined versus frontally emergent submarine landslides:A 3D seismic characterisation[J]. Marine and Petroleum Geology, 2006, 23(5):585-604.
吴时国, 秦蕴珊. 南海北部陆坡深水沉积体系研究[J]. 沉积学报, 2009,27(5):922-930.
POSAMENTIER H W, KOLLA V. seismic geomorphology and stratigraphy of depositional elements in deep-water Settings[J]. Journal of Sedimentary Research, 2003, 73(3):367-388.
POSAMENTIER H W. Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2003, 20(6/7/8):677-690.
MOSCARDELLI L, WOOD L. New classification system for mass transport complexes in offshore Trinidad[J]. BasinResearch, 2010, 20(1):73-98.
LOCAT J, LEE H J. Submarine landslides: advances and challenges[J].Canadian Geotechnical Journal, 2002, 39(1):193-212.
TIAGO M A. Submarine slide blocks and associated soft-sediment deformation in deep-water basins:A review[J]. Marine and Petroleum Geology, 2015, 67:262-285.
SUN Q L, LESLIE S. Tsunamigenic potential of an incipient submarine slope failure in the norther South China Sea[J]. Marine and Petroleum Geology, 2020, 112:104-111.
WEIMER P. Sequence stratigraphy, facies geometries, and depositional history of the Mississippi fan, Gulf of Mexico[J]. Bull Amer Assoc Petrol Geol, 1990,74(4):425-453.
HAMPTON M A, LEE H J, LOCAT J. Submarine landslides[J]. Reviews of Geophysics, 1996, 34(1):33-59.
吴时国, 秦志亮, 王大伟,等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12):3184-3195.
SHANMUGAM G. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Reply[J]. AAPG Bulletin, 2014, 98(4):858-879.
BULL S, CARTWRIGHT J, HUUSE M.A review of kinematic indicators from mass-transport complexes using 3Dseismic data[J].Marine and Petroleum Geology, 2009, 26(7):1132-1151.
PRIOR D B, BORNHOLD B D, JOHNS M W. Depositional characteristics of a submarine debris flow[J]. Journal of Geology, 1984, 92:707-727.
SHANMUGAM G, LEHTONEN L R, STRAUME T, et al. Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North seas (61-67°N): implications for sand distribution[J]. AAPG Bulletin,1994,78(6):910-937.
CANALS M, LASTRAS G, URGELES R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project[J]. Marine Geology, 2004, 213(1/2/3/4):9-72.
OMERU T, CARTWRIGHT J A. The efficacy of kinematic indicators in a complexly deformed mass transport deposit: Insights from the deepwater Taranaki Basin, New Zealand[J]. Marine and Petroleum Geology, 2019, 106:74-87.
NWOKO J, KANE I, HUUSE M. Mass transport deposit (MTD) relief as a control on post-MTD sedimentation: Insights from the Taranaki Basin, offshore New Zealand[J]. Marine and Petroleum Geology, 2020, 120:104489.
MULDER T, DUCASSOU E, GILLET H, et al. First discovery of channel-levee complexes in a modern deep-water carbonate slope environment[J]. Journal of Sedimentary Research,2014, 84(11):1139-1146.
PRINCIPAUD M, MULDER T, GILLET H, et al. Large-scale carbonate submarine mass-wasting along the northwestern slope of the Great Bahama Bank (Bahamas): Morphology, architecture, and mechanisms[J]. Sedimentary Geology, 2015, 317(3):27-42.
PRINCIPAUD M, PONTE J, MUDER T, et al. Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits[J]. Basin Research, 2017, 29(6):699-724.
WUNSCH M, BETZLER C, LINDHORST S, et al. Sedimentary dynamics along carbonate slopes (Bahamas archipelago)[J]. Sedimentology, 2016, 64(3):631-657.
WUNSCH M, BETZLER C, EBERLI G P, et al. Sedimentary dynamics and high-frequency sequence stratigraphy of the slope of Great Bahama Bank[J]. Sedimentary Geology, 2017, 363(1):96-117.
GOFF J L, SLOOTMAN A, MULDER T, et al. On the architecture of intra-formational mass-transport deposits: Insights from the carbonate slopes of Great Bahama Bank and the Apulian Carbonate Platform[J]. Marine Geology, 2020, 427:106205.
BETZLER C, LINDHORST S, LÜDMANN T, et al. The leaking bucket of a Maldives atoll: Implications for the understanding of carbonate platform drowning[J]. Marine Geology, 2015, 366:16-33.
BETZLER C, HÜBSCHER C, LINDHORST S, et al. Lowstand wedges in carbonate platform slopes (Quaternary, Maldives, Indian Ocean)[J]. Depositional Record, 2016, 2(2):196-207.
TCHEREPANOV E N, DROXLER A W, LAPOINTE P, et al. Carbonate seismic stratigraphy of the Gulf of Papua mixed depositional system: Neogene stratigraphic signature and eustatic control[J]. Basin Research, 2008, 20(2):185-209.
PUGA-BERNABÉU A, WEBSTER J M, BEAMAN R J, et al. Morphology and controls on the evolution of a mixed carbonate-siliciclastic submarine canyon system, Great Barrier Reef margin, north-eastern Australia[J].Marine Geology, 2011, 289(1/2/3/4):100-116.
TAYLOR B, HAYES D E. Origin and history of the South China Sea basin[J].Geophysical Monograph, 1983,27:23-56.
FRANKE D, SAVVA D, PUBELLIER M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58:704-720.
吴时国, 张新元. 南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应[J]. 地球科学—中国地质大学学报, 2015, 40(2):234-248.
吴时国, 朱伟林, 马永生. 南海半封闭边缘海碳酸盐台地兴衰史[J]. 海洋地质与第四纪地质, 2018, 38(6):1-17.
黎雨晗, 黄海波, 丘学林,等. 中沙海域的广角与多道地震探测[J]. 地球物理学报, 2020, 63(4):1523-1537.
赵斌, 高红芳, 张衡,等. 基于深度域地震成像的中沙海槽盆地东北部结构构造研究[J]. 热带海洋学报, 2019, 38(2):95-102.
WU Y M, DING W W, CLIFT P D, et al. Sedimentary budget of the northwest sub-basin, South China Sea: controlling factors and geological implications[J]. International Geology Review, 2019,62(7/8):970-987.
朱伟林, 解习农, 王振峰,等. 南海西沙隆起基底成因新认识[J]. 中国科学:地球科学, 2017,47(12):1460-1468.
BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B4):6299-6328.
BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58:599-611.
郝天珧, 徐亚, 孙福利,等. 南海共轭大陆边缘构造属性的综合地球物理研究[J]. 地球物理学报,2011,54(12):3098-3116.
HUANG H B, QIU X L, PICHOT T, et al. Seismic structure of the northwestern margin of the South China Sea: implication for asymmetric continental extension[J].Geophysical Journal International, 2019, 218(2):1246-1261.
黄金森. 中沙环礁特征[J]. 海洋地质与第四纪地质, 1987(2):23-26.
HUANG X X, BETZLER C, WU S G, et al. First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea[J]. Marine and Petroleum Geology, 2020:104349.
CAMESELLE A L, RANERO C R, BARCKHAUSEN U. Understanding the 3D formation of a wide rift: the central South China Sea rift system[J]. Tectonics, 2020, 39(12):e2019TC006040.
徐子英, 汪俊, 高红芳 ,等. 中沙地块南部断裂发育特征及其成因机制[J]. 中国地质, 2020, 47(5):1438-1446.
WANG D D, WU S G, QIN Z L, et al. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin, South China Sea: Implications for regional tectonic activity[J]. Marine Geology, 2013, 346:165-182.
马玉波, 吴时国, 谷明峰,等. 西沙海区碳酸盐台地地震反射特征及沉积模式[J]. 海洋学报, 2010, 32(4):118-128.
WU S G, YANG Z, WANG D W, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea[J]. Marine Geology, 2014, 350:71-83.
WANG R, YU K F, JONES B, et al. Evolution and development of Miocene “island dolostones” on Xisha Islands,China South Sea[J]. Marine Geology, 2018, 406:142-158.
朱伟林, 王振峰, 米立军,等. 南海西沙西科1井层序地层格架与礁生长单元特征[J]. 地球科学―中国地质大学学报, 2015, 40(4):677-687.
罗威, 张道军, 刘新宇,等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志, 2018, 42(4):123-136.
SHAO L, CUI Y C,QIAO P J, et al. Sea-level changes and carbonate platform evolution of the Xisha Islands (South China Sea) since the Early Miocene[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2017, 485:504-516.
FAN T L, YU K F, ZHAO J X, et al. Strontium isotope stratigraphy and paleomagnetic age constraints on the evolution history of coral reef islands, northern South China Sea[J/OL]. Geological Society of America Bulletin, 2019, 132(3/4).DOI:10.1130/B35088.1http://dx.doi.org/10.1130/B35088.1.
LI C F, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014,15(12):4958-4983.
LI C F, LI J B, DING W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(3):1377-1399.
MILLER K, KOMINZ M, BROWNING J, et al. The phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752):1293-1298.
秦志亮. 南海北部陆坡块体搬运沉积体系的沉积过程、分布及成因研究[D]. 青岛:海洋研究所, 2012.
白博, 秦志亮, 杨鲲,等. 珠江口盆地白云深水区海底重力滑脱构造地震地质综合识别[J]. 物探化探计算技术, 2016, 38(2):219-224.
PIRMEZ C, MARR J, SHIPP C, et al. Observations and numerical modeling of debris flows in the Na Kika Basin,Gulf of Mexico[C]//Offshore Technology Conference.Houston,2004.
BOUTEILLER P L, LAFUERZA S, CHARLÉTY J, et al. A new conceptual methodology for interpretation of mass transport processes from seismic data[J]. Marine and Petroleum Geology, 2019, 103:438-455.
SHANMUGAM G. Mass transport: slides, slumps, and debris flows[M/OL]//Mass Transport, Gravity Flows, and Bottom Currents, 2021:7-88.https://doi.org/10.1016/B978-0-12-822576-9.00002-3https://doi.org/10.1016/B978-0-12-822576-9.00002-3
王俊勤, 罗进华, 张广旭,等. 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制[J]. 海洋地质与第四纪地质,2019,39(4):87-95.
邢作昌, 张忠涛, 林畅松,等.珠江口盆地荔湾凹陷晚渐新世——早中新世重力流沉积类型及其特征[J].古地理学报, 2020, 22(6):127-140.
SCHLAGER W, REIJMER J, DROXLER A. Highstand shedding of carbonate platforms[J]. Journal of Sedimentary Research, 1994, 64(3):270-281.
李学林, 张汉羽, 刘刚,等. 西沙孤立碳酸盐台地的地震层序及演化模式——以永乐环礁为例[J]. 海洋地质与第四纪地质, 2020, 40(5):87-96.
李艳, 吴南, 胡守祥 ,等. 南海白云凹陷东南部两种不同类型块体搬运沉积体系的地震响应及成因分析[J/OL].热带海洋学报,2021.https://kns.cnki.net/kcms/detail/44.1500.P.20201116.1351.004.htmlhttps://kns.cnki.net/kcms/detail/44.1500.P.20201116.1351.004.html.
VINCENT E, KILLINGLEY J S. Oxygen and carbon isotope record for the early and middle Miocene in the central Equatorial Pacific (Leg 85) and Paleoceanographic Implications[J]. 1985,85:749-769.
陈晓良, 赵泉鸿, 翦知湣. 南海北部ODP1148站中新世以来的碳酸盐含量变化及其古环境意义[J]. 海洋地质与第四纪地质, 2002, 22(2):69-74.
邵磊, 李献华, 汪品先,等. 南海渐新世以来构造演化的沉积记录——ODP 1148站深海沉积物中的证据[J].地球科学进展, 2004, 19(4):539-544.
NORMARK W R, MOORE J G, TORRESAN M E. Giant volcano-related landslides and the development of the Hawaiian islands[C]// U.S. Geological Survey Bulletin,2002:184-196.
阎贫, 刘海龄. 南海及其周缘中新生代火山活动时空特征与南海的形成模式[J]. 热带海洋学报, 2005, 24(2):33-41.
ZHANG Q, WU S G, DONG D D. Cenozoic magmatism in the northern continental margin of the South China Sea: evidence from seismic profiles[J]. Marine Geophysical Research, 2016, 37(2):71-94.
SUN Q L, ALVES T M, ZHAO M H, et al.Post-rift magmatism on the northern South China Sea margin [J]. Geological Society of America Bulletin, 2020, 132(11/12):2382-2396.
0
浏览量
1
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构