1.中山大学地球科学与工程学院,广东 广州 510275
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
3.中国科学院南海海洋研究所,广东 广州 510301
李琳琳(1981年生),女;研究方向:海洋地质灾害;E-mail:lilinlin3@mail.sysu.edu.cn
纸质出版日期:2022-01-25,
网络出版日期:2021-09-23,
收稿日期:2021-07-03,
录用日期:2021-08-04
扫 描 看 全 文
李琳琳,李发渟,邱强等.1918年南澳地震海啸影响模拟及其警示[J].中山大学学报(自然科学版),2022,61(01):27-38.
LI Linlin,LI Fating,QIU Qiang,et al.Tsunami simulation of the 1918 Nan’ao earthquake and its implication[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):27-38.
李琳琳,李发渟,邱强等.1918年南澳地震海啸影响模拟及其警示[J].中山大学学报(自然科学版),2022,61(01):27-38. DOI: 10.13471/j.cnki.acta.snus.2021D043.
LI Linlin,LI Fating,QIU Qiang,et al.Tsunami simulation of the 1918 Nan’ao earthquake and its implication[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(01):27-38. DOI: 10.13471/j.cnki.acta.snus.2021D043.
1918年2月13日发生华南沿海南澳岛附近的M
w
7.5级地震是南海北部少数几个伴有海啸发生的地震之一。历史文献中明确记载了地震发生后在广东和福建沿海出现的一些海啸现象。本研究基于历史文献资料、前人震后调查和对该地震发生区域最新的地球物理探测资料,约束1918年地震参数(震中、破裂范围、断层几何等),通过对几组地震参数详细的海啸模拟,研究该地震事件引发的海啸影响及其特征。模拟结果表明,该地震事件引发的海啸向西可波及至珠江口海域的澳门、珠海,东到福建泉州,影响了直线距离接近800 km的华南沿海,距离震源最近的南澳岛南部和东部受海啸影响最大,青澳湾波高可达3~4 m,其次是福建省东山县(2~3 m)和广东省汕头一带(约1 m)。海啸正波在半小时后即可传播到南澳岛和汕头沿海,到达泉州和香港、澳门沿海的时间分别为3 h和4~5 h。通过对海啸波传播过程、波高分布和典型站点海啸波时序的波谱分析,我们指出滨海断裂带地震触发的海啸具有两个特别需要关注的危险性特征:1)海啸波在华南沿海陆架区域的超长周期振荡,南海北部宽阔的陆架和滨海断裂带与海岸线近乎平行的走向极其有效地将海啸波“捕获”在陆架区域,可产生长达48 h以上的超长时间振荡;2)由海水急剧涨落及超长时间振荡引发的海啸强流会对港口、码头、海产养殖等基础设施密集的华南沿海区域造成严重影响。同时,我们对1918年地震关键参数的敏感性分析也表明海啸的规模和影响范围受控于地震类型和断层几何,目前我们对滨海断裂带精细几何结构和活动性的认识严重不足,亟需开展滨海断裂带海底精细几何结构的探测和活动习性研究,为评价南海北部潜在强震和海啸风险提供科学依据。
The 1918 M
w
7.5 Nan’ao earthquake is one of the few events which are associated with a tsunami in the coastal region of South China. Historical records provide clear evidence of tsunami phenomena along the coasts of Guangdong and Fujian. Based on the constraint of historical records, post-earthquake survey, and the most updated geophysical data, we propose several synthetic earthquake scenarios with different fault geometries and investigate the corresponding tsunami hydrodynamics in detail. Our numerical modelling results suggest that the tsunami generated by this event may have affected a large portion of coastline ranging from Macau to Quanzhou in South China.The most impacted region is the southern and eastern coast of Nan’ao island with the maximum tsunami wave height of 3- 4 m in Qing’ao Bay. Followed by the coast of Dongshan County in Fujian (2-3 m), and Shantou in Guangdong (~1 m). The first positive tsunami wave arrives in Nan’ao and Shantou in half an hour and reaches Quanzhou, Hong Kong, and Macau in 3 hours, 4 hours and 5 hours, respectively. Based on the tsunami propagation process, distributions of tsunami wave height, and the analysis of tsunami waveforms in representative locations, we point out that the tsunami generated by earthquakes along the littoral fault possesses two unique features which may cause substantial damage in the future: 1) the long tsunami duration (longer than 48 hours) due to shelf resonance and edge wave trapped in the very broad continental shelf of northern South China Sea; 2) strong tsunami currents induced by rapid change of sea level will pose a significant threat to coastal infrastructures, e.g. ports, wharves, and aquaculture farms in southern China. Our sensitivity tests on earthquake parameters suggest that the tsunamigenic capacity is strongly affected by the source mechanism and fault geometries. Detailed marine geophysical surveys are required to better understand the geometrical characteristics and seismogenic behavior of the littoral fault. Such geophysical data provides the scientific basis for the potential earthquake and tsunami hazard assessment in the coastal region of South China.
海域地震海啸陆架振荡滨海断裂带
submarine earthquaketsunamishelf resonancelittoral fault zone
彭承光, 李运贵, 吴名彬. 1918年南澳大地震发震构造机制分析[J]. 华南地震, 2017, 37(Suppl 1):1-14.
翁文灏. 回忆一些我国地质工作初期情况[J]. 中国科技史料, 2001, 22(3):197-201.
谢毓寿, 蔡美彪同. 中国地震历史资料汇编[M].北京: 科学出版社,1983.
XIA S H, ZHOU P, ZHAO D, et al. Seismogenic structure in the source zone of the 1918 M7.5 Nanao earthquake in the northern South China Sea[J].Physics of the Earth and Planetary Interiors,2020,302:106472.
孙金龙, 徐辉龙, 詹文欢, 等. 南海北部陆缘地震带的活动性与发震机制[J]. 热带海洋学报,2012(3):43-50.
潘建雄, 黄日恒. 1918年南澳地震的破坏强度及震中位置[J]. 华南地震, 1994, 14(2):17-23.
XU H, QIU X, ZHAO M, et al. Characteristics of the crustal structure and hypocentral tectonics in the epicentral area of Nan’ao earthquake (M7.5), the northeastern South China Sea[J]. Chinese Science Bulletin, 2006, 51(Suppl 2): 95-106.
BLASER L, KRUGER F, OHRNBERGER M, et al. Scaling relations of earthquake source parameter estimates with special focus on subduction environment[J]. Bulletin of Seismological Society of America, 2010, 100(6): 2914-2926.
WANG X M, POWER W. COMCOT : tsunami generation, propagation and run-up model[CP/OL].2011.https://www.scribd.com/document/180207329/COMCOT-User-Manual-v1-7-pdfhttps://www.scribd.com/document/180207329/COMCOT-User-Manual-v1-7-pdf.
WANG X M,LIU P L F. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami[J]. Journal of Hydraulic Research, 2006, 44(2):147-154.
MUELLER C, POWER W, FRASER S, et al. Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example[J].Journal of Geophysical Research: Solid Earth, 2015, 120(1):488-502.
POWER W, DOWNES G, STIRLING M. Estimation of tsunami hazard in New Zealand due to South American earthquakes[J]. Pure and Applied Geophysics, 2007, 164(2):547-564.
HUANG Z H, WU T S, TAN S K, et al. Tsunami hazard from the subduction Megathrust of the South China Sea: Part Ⅱ. Hydrodynamic modeling and possible impact on Singapore[J]. Journal of Asian Earth Science, 2009, 36(1):93-97.
LI L L, SWITZER A D, CHAN C H, et al. How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea[J]. Journal of Geophysical Research: Solid Earth, 2016,121(8):6250-6272.
LI L L, SWITZER A D, WANG Y, et al. A modest 0.5 m rise in sea level will double the tsunami hazard in Macau[J].Science Advances, 2018,4(8):eaat1180.
SEPULVEDA I, LIU P L F, GRIGORIU M. Probabilistic tsunami hazard assessment in South China Sea with consideration of uncertain earthquake characteristics[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1):658-688.
王培涛,闪迪,王岗,等. 日本东北 Mw9.0 地震海啸在港池及邻近区域诱发的涡流危险性计算与评估分析[J]. 地球物理学报, 2016, 59(11): 4162-4177.
LYNETT P J, BORRERO J, SON S, et al. Assessment of the tsunami-induced current hazard[J]. Geophysical of Research Letter, 2014,41(6): 2048-2055.
OKAL E A, FRITZ H M, RAAD P E, et al. Oman field survey after the December 2004 Indian Ocean tsunami[J]. Earthquake Spectra, 2006, 22 (Suppl 3):203-218.
OKAL E A, FRITZ H M, RAAD P E, et al. Oman field survey after the December 2004 Indian Ocean tsunami[J].Earthquake Spectra,2006,22(S3):S203-S218.
DENGLER L, USLU B, BARBEROPOULOU A, et al. The vulnerability of Crescent City, California, to tsunamis generated by earthquakes in the Kuril Islands region of the Northwestern Pacific[J]. Seismological Research Letter, 2008, 79(5):608-619.
ARCOS M E M, LeVEQUE R J. Validating velocities in the GeoClaw tsunami model using observations near Hawaii from the 2011 Tohoku tsunami[J]. Pure and Applied Geophysics, 2015, 172(3/4):849-867.
HEIDARZADEH M, SATAKE K. Excitation of basin-wide modes of the Pacific ocean following the March 2011 Tohoku tsunami[J]. Pure and Applied Geophysics, 2014, 171(12):3405-3419.
MELGAR D, RUIZ-ANGULO A. Long-lived tsunami edge waves and shelf resonance from the M8.2 Tehuantepec earthquake[J].Geophysical Research Letter, 2018,45(22):12414-12421.
KAJIURA K. The directivity of energy radiation of the tsunami generated in the vicinity of a continental shelf[J]. Journal of Oceanography, 1972, 28(6):260-277.
RABINOVICH A B, STEPHENSON F E, THOMSON R E. The California tsunami of 15 June 2005 along the coast of North America[J]. Atmosphere-Ocean, 2006, 44(4):415-427.
李志刚,张培震,惠格格,等.南海北部滨海断裂带的深部结构探测现状和展望[J].中山大学学报(自然科学版),2022,61(1):55-62.
0
浏览量
2
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构