1.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
2.中山大学大气科学学院/广东省气候变化与自然灾害研究重点实验室,广东 珠海 519082
3.惠州学院地理与旅游学院,广东 惠州 516007
陈子健(1995年生), 男; 研究方向: 中小尺度天气; E-mail: chenzj59@mail2.sysu.edu.cn
林文实(1965 年生), 男; 研究方向: 中小尺度天气动力学、数值天气预报; E-mail:linwenshi@mail.sysu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-16,
收稿日期:2021-02-26,
录用日期:2021-03-11
扫 描 看 全 文
陈子健,林文实,蒋宝林等.华南珠三角地区海岸线和地形对暖区暴雨的影响[J].中山大学学报(自然科学版),2022,61(03):62-75.
CHEN Zijian,LIN Wenshi,JIANG Baolin,et al.Effects of coastline and terrain on warm-sector heavy rainfall in the Pearl River Delta, South China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):62-75.
陈子健,林文实,蒋宝林等.华南珠三角地区海岸线和地形对暖区暴雨的影响[J].中山大学学报(自然科学版),2022,61(03):62-75. DOI: 10.13471/j.cnki.acta.snus.2021D012.
CHEN Zijian,LIN Wenshi,JIANG Baolin,et al.Effects of coastline and terrain on warm-sector heavy rainfall in the Pearl River Delta, South China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):62-75. DOI: 10.13471/j.cnki.acta.snus.2021D012.
通过使用WRF-Chem模式进行3个敏感性试验,研究东亚夏季风背景下,华南珠三角地区复杂的海岸线和沿岸众多低矮的山脉地形与暖区暴雨强度和分布之间的物理关联。通过动力以及水汽输送分析,发现当珠三角地区的低矮山脉地形移除后,山脉群对气流的地形抬升以及辐合作用消失,海岸线上的对流活动明显减少,925 hPa上水汽在海岸线上的积累减少,降雨区域向北移动约80 km,降水强度也减弱;当沿岸山脉地形移除,海岸线北移,喇叭口特殊地形消失后,原来海岸线上的海陆摩擦力差异消失,气流的辐合对流运动大幅减少,珠三角区域内几乎没有降水,取而代之的是在新的海岸线沿岸附近由于地形抬升作用以及下垫面摩檫力的差异,出现新的对流活动以及水汽的堆积,并且新海岸线上出现新的降水中心。因此珠三角区域内海岸线以及海岸山地是影响降水强度、分布和发生发展的重要因素。
We conducted three experiments using the WRF-Chem model to examine the physical effects of the coastline and numerous low mountains along the coast in the Pearl River Delta (PRD) area on the intensity and distribution of warm-sector heavy rainfall. We analyzed dynamic effects and water vapor transport
and found that by replacing the mountains in the PRD with flat land
orographic lifting disappears
resulting in a considerable reduction of coastal convergence and water vapor accumulation at 925 hPa along the coastline;the 12 hours accumulated precipitation area is mainly confined to the north of 22.7°N which is 80 km north than without moving out the mountains
and precipitation intensity decreases. By shifting the coastline northward and thus
removing the special topography of the low mountains and the contrast of frictional forces along the original coastline
the convection caused by the convergence is greatly reduced. As a result
almost no precipitation falls in the PRD region. Instead
convection
water vapor accumulation and precipitation centers appear near the new coastline because of orographic lifting and discontinuities in surface friction. The coastline and coastal mountains of the PRD play important roles in the occurrence
intensity and distribution of precipitation.
暖区暴雨海岸线地形WRF-Chem模式珠三角地区
warm-sector heavy rainfallcoastlineterrainWRF-Chem modelthe Pearl River Delta area
HUANG S S, LI Z G, BAO C L, et al. Rainstorms during pre-rainy season in South China [M]. Guangzhou: Guangdong Science and Technology Press, 1986.
TAO S Y. Rainstorms in China [M]. Beijing: Science Press, 1980.
LIN L X, FENG Y R, HUANG Z, et al. Technical guidance on weather forecasting in Guangdong Province [M]. Beijing: China Meteorological Press, 2006.
WU N, WEN Z, DENG W, et al. Advances in warm-sector heavy rainfall during the first rainy season in South China [J]. Journal of the Meteorological Sciences, 2020, 40(5): 605-616.
GROSSMAN R L, DURRAN D R. Interaction of low-level flow with the western ghat mountains and offshore convection in the summer monsoon[J].Monthly Weather Review, 1984, 112(4): 652-672.
HOUZE R A, WILTON D C, SMULL B F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar [J]. Quarterly Journal of the Royal Meteorological Society,2007,133(627):1389-1411.
XIE S P, XU H, SAJI N H, et al. Role of narrow mountains in large-scale organization of Asian monsoon convection [J]. Journal of Climate, 2006, 19(14): 3420-3429.
DING Y H, CHAN J C L. The East Asian summer monsoon: An overview [J]. Meteorology and Atmospheric Physics, 2005, 89(1): 117-142.
BAI L, CHEN G, HUANG L. Convection initiation in monsoon coastal areas (South China) [J]. Geophysical Research Letters, 2020, 47(11): e2020GL087035.DOI:10.1029/2020GL087035http://dx.doi.org/10.1029/2020GL087035.
DU Y, CHEN G, HAN B, et al. Convection initiation and growth at the coast of South China. Part II: Effects of the terrain, coastline, and cold pools [J]. Monthly Weather Review, 2020, 148(9): 3871-3892.
BUZZI A, TARTAGLIONE N, MALGUZZI P. Numerical simulations of the 1994 Piedmont Flood: role of orography and moist processes[J]. Monthly Weather Review, 1998, 126(9): 2369-2383.
BERGERON T. The problem of artificial control of rainfall on the globe: II.The coastal orographic maxima of precipitation in autumn and winter [J]. Tellus, 1949, 1(3): 15-32.
LEE J T, LEE D I, SHIMIZU S, et al. Analysis of determinants for an enhanced and long-lasting coastal convective system by means of a case study (26 July 2011) [J]. Advances in Atmospheric Sciences, 2019, 36(12): 1327-1339.
LEE J T, LEE D I, YOU C H, et al. Dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: a case study [J]. Tellus A: Dynamic Meteorology and Oceanography, 2014, 66(1): 23453.
LIN Y L, CHIAO S, WANG T A, et al. Some common ingredients for heavy orographic rainfall [J]. Weather and Forecasting, 2001, 16(6): 633-660.
YU C K, JORGENSEN D P, ROUX F. Multiple precipitation mechanisms over mountains observed by airborne Doppler radar during MAP IOP5 [J]. Monthly Weather Review, 2007, 135(3): 955-984.
BUZZI A, FOSCHINI L. Mesoscale meteorological features associated with heavy precipitation in the southern Alpine region [J]. Meteorology and Atmospheric Physics, 2000, 72(2): 131-146.
NUISSIER O, DUCROCQ V, RICARD D, et al. A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients [J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134(630): 111-130.
TU C C, CHEN Y L, LIN P L, et al. Characteristics of the marine boundary layer jet over the south china sea during the early summer rainy season of Taiwan [J]. Monthly Weather Review, 2019, 147(2): 457-475.
MIGLIETTA M M, ROTUNNO R. Numerical simulations of conditionally unstable flows over a mountain ridge [J]. Journal of the Atmospheric Sciences, 2009, 66(7): 1865-1885.
MIGLIETTA M M, ROTUNNO R. Numerical simulations of Low-CAPE flows over a mountain ridge [J]. Journal of the Atmospheric Sciences, 2010, 67(7): 2391-2401.
MIGLIETTA M M, ROTUNNO R. Application of theory to simulations of observed cases of orographically forced convective rainfall [J]. Monthly Weather Review, 2012, 140(9): 3039-3053.
MIGLIETTA M M, ROTUNNO R. Numerical simulations of sheared conditionally unstable flows over a mountain ridge [J]. Journal of the Atmospheric Sciences, 2014, 71(5): 1747-1762.
CHEN G T J, YU C C. Study of low-level jet and extremely heavy rainfall over northern Taiwan in the Mei-Yu season [J]. Monthly Weather Review, 1988, 116(4): 884-891.
DAVIS C A, LEE W C. Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX [J]. Journal of the Atmospheric Sciences, 2012, 69(2): 521-537.
KUO Y C, LEE M A, LU M M. Association of Taiwan's rainfall patterns with large-scale oceanic and atmospheric phenomena [J]. Advances in Meteorology, 2016, 2016: 3102895.
LI J, CHEN Y L, LEE W C. Analysis of a heavy rainfall event during TAMEX [J]. Monthly Weather Review, 1997, 125(6): 1060-1082.
XU W, ZIPSER E J, CHEN Y L, et al. An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance [J]. Monthly Weather Review, 2012, 140(8): 2555-2574.
DU Y, CHEN G. Climatology of low-level jets and their impact on rainfall over Southern China during the early-summer rainy season [J]. Journal of Climate, 2019, 32(24): 8813-8833.
FU P, ZHU K, ZHAO K, et al. Role of the nocturnal low-level jet in the formation of the morning precipitation peak over the Dabie Mountains [J]. Advances in Atmospheric Sciences, 2019, 36(1): 15-28.
ZHAO Y. Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer[J].Atmospheric Research,2012,113: 22-39.
CHEN X, ZHANG F, ZHAO K. Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Mei-Yu Season coastal rainfall over South China [J]. Journal of the Atmospheric Sciences, 2017, 74(9): 2835-2856.
DU Y, CHEN G. Heavy rainfall associated with double low-level jets over Southern China. Part II: Convection Initiation [J]. Monthly Weather Review, 2019, 147(2): 543-565.
LI H, WAN Q, PENG D, et al. Multiscale analysis of a record-breaking heavy rainfall event in Guangdong, China [J].Atmospheric Research,2020, 232: 104703.DOI:10.1016/j.atmosres.2019.104703http://dx.doi.org/10.1016/j.atmosres.2019.104703.
LUO Y, SUN J, LI Y, et al. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China [J]. Journal of Meteorological Research, 2020, 34(3): 427-459.
LUO Y, ZHANG R, WAN Q, et al. The southern China monsoon rainfall experiment (SCMREX) [J]. Bulletin of the American Meteorological Society, 2017,98(5):999-1013.
WU N, ZHUANG X, MIN J, et al. Practical and intrinsic predictability of a warm-sector torrential rainfall event in the South China monsoon region[J].Journal of Geophysical Research:Atmospheres,2020,125(4): e2019JD031313.
JOYCE R J, JANOWIAK J E, ARKIN P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution [J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
HOU T, KONG F, CHEN X, et al. Impact of 3DVAR data assimilation on the prediction of heavy rainfall over Southern China [J]. Advances in Meteorology, 2013,2013: 129642.DOI:10.1155/2013/129642http://dx.doi.org/10.1155/2013/129642.
GRELL G A,DÉVÉNYI D.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J].Geophysical Research Letters, 2002, 29(14):1693.DOI:10.1029/2002GL015311http://dx.doi.org/10.1029/2002GL015311.
LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model [J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1065-1092.
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Monthly Weather Review,2006, 134(9): 2318-2341.
IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13):D13103.http://doi.org/10.1029/2008JD009944http://doi.org/10.1029/2008JD009944.
LIVNEH B, RESTREPO P J, LEITENMAIER D P. Development of a unified land model for prediction of surface hydrology and land-atmosphere interactions [J]. Journal of Hydrometeorology, 2011, 12(6): 1299-1320.
JIMENEZ P A, DUDHIA J, GONZALEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation [J]. Monthly Weather Review, 2012, 140(3): 898-918.
ZAVERI R A, PETERS L K. A new lumped structure photochemical mechanism for large-scale applications [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D23): 30387-30415.
ZAVERI R A, EASTER R C, FAST J D, et al. Model for simulating aerosol interactions and chemistry(MOSAIC) [J].Journal of Geophysical Research-Atmospheres, 2008,113(D13): D13204.https://doi.org/10.1029/2007JD008782https://doi.org/10.1029/2007JD008782.
BARNARD J C, CHAPMAN E G, FAST J D, et al. An evaluation of the FAST-J photolysis algorithm for predicting nitrogen dioxide photolysis rates under clear and cloudy sky conditions [J]. Atmospheric Environment, 2004, 38(21): 3393-3403.
WILD O, ZHU X, PRATHER M J. Fast-j: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models [J]. Journal of Atmospheric Chemistry, 2000, 37(3): 245-282.
LI M, ZHANG Q, STREETS D G, et al. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms[J]. Atmospheric Chemistry and Physics,2014,14(11): 5617-5638.
GUENTHER A, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) [J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3181-3120.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构