安庆医药高等专科学校药学院, 安徽 安庆 246052
马允 (1980年生), 女; 研究方向: 催化新材料与新技术; E-mail:myun@aqmc.edu.cn, mayun-my@163.com
纸质出版日期:2022-07-25,
网络出版日期:2021-11-12,
收稿日期:2021-07-07,
录用日期:2021-09-09
扫 描 看 全 文
马允.酸促UiO-66的合成及其对废水中头孢抗生素的处理效率[J].中山大学学报(自然科学版),2022,61(04):79-84.
MA Yun.Synthesis of acid-promoted UiO-66 and its degradation rate for treatment of cephalosporin in wastewater[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):79-84.
马允.酸促UiO-66的合成及其对废水中头孢抗生素的处理效率[J].中山大学学报(自然科学版),2022,61(04):79-84. DOI: 10.13471/j.cnki.acta.snus.2021C015.
MA Yun.Synthesis of acid-promoted UiO-66 and its degradation rate for treatment of cephalosporin in wastewater[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):79-84. DOI: 10.13471/j.cnki.acta.snus.2021C015.
UiO-66的合成中通常加入酸性物质作为酸度调节剂。以ZrCl
4
为前驱体、对苯二甲酸为有机配体、
N
,
N
-二甲基甲酰胺为溶剂,采用水热法制备了UiO-66,通过向前驱体溶液中加入不同体积的HAc考察酸度调节剂对UiO-66结构和性能的影响。使用热重、红外光谱、X射线衍射、扫描电镜、透射电镜、氮吸附脱附对样品进行表征分析,并以头孢曲松钠为降解污染物,考察了UiO-66可见光催化降解头孢抗生素的效率。结果显示,添加HAc的UiO-66结构更规整,在可见光区域具有更强的吸收能力。未添加HAc时,UiO-66呈小颗粒圆形,比表面积为695.435 8 m²/g,可见光照射120 min对头孢曲松钠的降解率为29.46%。随着HAc添加量的增大,UiO-66的粒径逐渐增加,当
n
(ZrCl
4
)∶
n
(H
2
BDC)∶
n
(HAc) = 1∶1∶200时,UiO-66具有更规则的八面体结构,其比表面积高达1 270.821 1 m²/g,可见光照射120 min对头孢曲松钠的降解率为50.77%。
Acidic substances are usually added to the synthesis of UiO-66 as acidity regulators. UiO-66 was prepared by hydrothermal method using zirconium chloride as its precursor, terephthalic acid as organic ligand and
N
,
N
- dimethylformamide as a solvent. The effect of acidity regulator on the structure and properties of UiO-66 was investigated by adding different volumes of acetic acid into the precursor solution. The samples were characterized and analyzed by thermogravimetric analysis, infrared spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption. The visible light catalytic degradation efficiency of UiO-66 was investigated using ceftriaxone sodium as the degradation pollutant. The results showed that the structure of UiO-66 added with acetic acid was more orderly and had stronger absorptive capacity in visible light region. When no acetic acid was added, UiO-66 was a small circular particle with a specific surface area of 695.435 8 m²/g. The degradation rate of ceftriaxone sodium by visible light irradiation for 120 min was 29.46%. With the increase of acetic acid content, the particle size of UiO-66 gradually increased. When
n
(ZrCl
4
)∶
n
(H
2
BDC)∶
n
(HAc) = 1∶1∶200, UiO-66 had a more regular octahedral structure, and its specific surface area was as high as 1 270.821 1 m²/g, and the degradation rate of ceftriaxone sodium under visible light irradiation for 120 min was 50.77%.
UiO-66HAc调节剂合成头孢抗生素
UiO-66acetic acidregulatorsynthesiscephalosporin
CHEN Y Z, CAI G, WANG Y, et al. Palladium nanoparticles stabilized with N-doped porous carbons derived from Metal-Organic Frameworks for selective catalysis in biofuel upgrade: The role of catalyst wettability[J]. Green Chem, 2016, 18(5): 1212-1217.
李美燕, 陈紫娟, 汪淑华, 等. Zr-MOF空心纳米球固载离子液体对CO2环加成反应的催化性能[J]. 高等学校化学学报, 2021,42(8):2474-2482.
TRENS P, BELARBI H, SHEPHERD C, et al. Adsorption and separation of xylene isomers vapors onto the chromium terephthalate-based porous material MIL-101 (Cr):An experimental and computational study[J]. Micropor Mesopor Mat, 2014,183(1):17-22.
LYU J, LIU H, ZENG Z, et al. Metal-Organic Framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution[J]. Ind Eng Chem Res, 2017, 56(9):2565-2572.
ZHU J, WU L, BU Z, et al. Polyethyleneimine-modified UiO-66-NH2(Zr) Metal-Organic Frameworks: Preparation and enhanced CO2 selective adsorption[J]. ACS Omega, 2019, 4(2):3188-3197.
YU J, XIE L H, LI J R, et al. CO2 capture and separations using MOFs: Computational and experimental studies[J]. Chem Rev, 2017, 117(14): 9674-9754.
熊芸, 蔡师, 陈新, 等. 基于UiO-66混合基质膜的制备与气体分离性能研究[J]. 化工新型材料, 2021,49(4):67-71.
DONG H, SUN X J, ZHANG X, et al. Synthesis and drug delivery properties of nano Metal-Organic Framework ZIF-90[J]. Mater Rev B, 2018, 32(1): 189-192.
LEI B, WANG M, JIANG Z, et al. Constructing redox-responsive Metal-Organic Framework nanocarriers for anticancer drug delivery[J]. ACS Appl Mater Interfaces, 2018,10(19): 16698-16706.
HERMES S, SCHRODER F, CHELMOWSKI R, et al. Selective nucleation and growth of Metal-Organic Open Framework thin films on patterned COOF/CF3-terminated self-assembled monolayers on Au (111) [J]. J Am Chem Soc, 2005,127 (40) :13744-13745.
BUX H, CHMELIK C, KRISHNA R, et al. Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation,adsorption,diffusion[J]. J Membr Sci, 2011,369(1/2) : 284-289.
KATHURIA A, Al-GHAMDI S, ABIAD M G, et al. The influence of Cu3 (BTC)2 Metal Organic Framework on the permeability and perm-selectivity of PLLA-MOF mixed matrix membranes[J]. J Appl Polym S, 2015,132(46) : 42764-42773.
LIU D M, LU K D, POON C, et al. Metal-Organic Frameworks as sensory materials and imaging agents[J]. Inorg Chem, 2014,53(4) :1916-1924.
ASSEN A H, YASSINE O, SHEKHAH O, et al. MOFs for the sensitive detection of ammonia: Deployment of fcu-MOF thin films as effective chemical capacitive sensors[J]. ACS Sens, 2017, 2(9):1294-1301.
ZHANG Y, JIA C, WANG Q, et al. Highly sensitive and selective toluene sensor of bimetallic Ni/Fe-MOFs derived porous NiFe2O4 nanorods[J]. Ind Eng Chem Res, 2019,58(22): 9450-9457.
YAO J, HE M, WANG H. Strategies for controlling crystal structure and reducing usage of organic ligand and solvents in the synthesis of zeolitic imidazolate frameworks[J]. CrystEngComm, 2015,17: 4970-4976.
ADHIKARI A K, LIN K S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni,Co) by doping palladium-containing activated carbon[J]. Chem Eng J, 2016,284 :1348-1360.
PI Y H, LI X Y, XIA Q B, et al. Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(Ⅵ)[J]. Nano Res, 2017,10:3543-3556.
HE H M, SUN Q, GAO W Y, et al. A stable Metal–Organic Framework featuring a local buffer environment for carbon dioxide fixation[J]. Angew Chem Int Ed, 2018, 57(17): 4657.
CAVKA J H, JAKOBSEN S, OLSBYE U, et al. Anew zirconium inorganic building brick forming Metal Organic Frameworks with exceptional stability[J]. J Am Chem Soc, 2008,130:13850.
GOMES S C, LUZ I, LLABRÉS X F X, et al. Water stable Zr-benzenedicarboxylate Metal-Organic Frameworks as photocatalysts for hydrogen generation[J]. Chem-Eur J, 2010, 16(36): 11133-11138.
PISCOPO G, POLYZOIDIS A, SCHWARZER M, et al. Stability of UiO-66 under acidic treatment:Opportunities and limitations for post-synthetic modifications[J]. Micropor Mesopor Mat, 2015,208:30-35.
SCHAATE A, ROY P, GODT A, et al. Modulated synthesis of Zr-based Metal-Organic Frameworks: From nano to single crystals[J]. Chem Eur J, 2011,17(24) : 6643-6651.
REN J W, LANGMI H W, NORTH B C, et al. Modulated synthesis of Zirconium-Metal Organic Framework(Zr-MOF) for hydrogen storage applications[J]. Int J Hydrogen Energy, 2014,39(2):890-895.
QIEN S, WRAGG D, REINSCH H, et al. Detailed structure analysis of atomic positions and defects in Zirconium Metal-Organic Frameworks[J]. Cryst Growth Des, 2014,14(11) :5370-5372.
QIU J H, FENG Y, ZHANG X F, et al. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms[J]. J Colloid Interf Sci, 2017,499:151-158.
罗小莉, 朱陈斌, 蓝丹, 等. 金属-有机多孔材料UiO-66负载黄酮苷类药物负载率的研究[J]. 化学研究与应用, 2021,33(7):1266-1271.
薛雨, 陈宇瑛. 头孢菌素类抗生素的最新研究进展[J]. 中国抗生素杂质, 2011,36(2):86-92.
CAREYAREY J H, LAWRENCE J, TOSINE H M. Photodechlorination of PCB′s in the presence of titanium dioxide in aqueous suspensions[J]. B Environ Contam Tox, 1976,16(6):697-706.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构