1.生物无机与合成化学教育部重点实验室 / 中山大学化学学院,广东 广州 510006
2.广州医科大学药学院,广东 广州 511436
童琳净(1999年生),女;研究方向:酶@金属有机框架的设计;E-mail:tonglj@mail2.sysu.edu.cn
陈国胜(1990年生),男;研究方向:功能材料设计及生命分析应用;E-mail:chengsh39@mail.sysu.edu.cn
[ "欧阳钢锋,中山大学化学学院教授,博士生导师,国家杰出青年科学基金获得者,英国皇家化学学会会士,中组部国家“万人计划”入选者,科技部中青年科技创新领军人才,广东省“珠江学者”特聘教授,广东省“百千万工程”领军人才。主持包括国家杰出青年科学基金、国家重大仪器专项、国家基金重点项目等在内的多个国家级、省部级项目。在Chem Rev、PNAS、Chem、Nat Commun、J Am Chem Soc、Angew Chem Int Ed 等期刊发表SCI论文250余篇,他引8 000余篇次,入选Elsevier中国高被引学者榜单。国际期刊Trends Anal Chem (IF=9.8)、Microchem J(IF=3.5)杂志副主编,Anal Chim Acta、Sci Rep、《环境化学》《环境科学》和《分析化学》等杂志编委。" ]
纸质出版日期:2022-03-25,
网络出版日期:2022-01-07,
收稿日期:2021-07-07,
录用日期:2021-09-30
扫 描 看 全 文
童琳净,黄思铭,陈国胜等.酶@金属有机框架复合材料的设计策略[J].中山大学学报(自然科学版),2022,61(02):1-7.
TONG Linjing,HUANG Siming,CHEN Guosheng,et al.The strategies for enzyme@metal-organic framework composites design[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):1-7.
童琳净,黄思铭,陈国胜等.酶@金属有机框架复合材料的设计策略[J].中山大学学报(自然科学版),2022,61(02):1-7. DOI: 10.13471/j.cnki.acta.snus.2021C014.
TONG Linjing,HUANG Siming,CHEN Guosheng,et al.The strategies for enzyme@metal-organic framework composites design[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):1-7. DOI: 10.13471/j.cnki.acta.snus.2021C014.
酶生物催化是一种在细胞微环境中进行的重要信号传递和代谢途径,可维持复杂的细胞网络之间的有序通讯及信号即时反馈,在生物传感、催化、纳米医药方面均具有重要的应用前景。然而,酶固有的脆弱性质极大地限制了酶分子在细胞外的操作性和实用性。合理设计金属有机框架(MOFs,metal-organic frameworks)材料,对酶结构进行束缚、固定是提高酶稳定性的前沿方法。本文综述了基于表面连接、渗透、原位包埋的3种酶@MOFs固定化策略,着重强调不同固定模式的适用范围及稳定化特性,并对酶@MOFs固定化研究的发展进行简单的展望。
Enzymatic biocatalysis is an important signal transduction and metabolic pathway in the cellular microenvironment, which can maintain the orderly communication between complex cell networks and allow the immediate signals feedback. It has an important application prospect in the fields of biosensors, catalysis and nanomedicine etc. However, the inherent fragility of enzymes greatly limits their maneuverability and practicability in extracellular environment. Rational design of metal-organic frameworks (MOFs) carriers to constraint and immobilize the enzymes is the forefront approach to improve the enzymes’ stability. In this paper, three immobilization strategies including surface attachment, osmosis-based entrapment and in-situ embedment methods are reviewed, with emphasis on the application range and stabilization characteristics of different immobilization modes. In addition, a brief outlook on the development of the immobilization research of enzyme@MOFs is also presented.
酶固定化金属有机框架生物催化
enzyme immobilizationmetal-organic frameworkbiocatalysis
SCHMID A, DORDICK J S, HAUER B, et al. Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409: 258-268.
BORNSCHEUER U T, HUISMAN G W, KAZLAUSKAS R J, et al. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485: 185-194.
ZDARTA J, MEYER A, JESIONOWSKI T, et al. A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility[J]. Catalysts, 2018, 8: 92.
FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341 (6149): 1230444.
WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J]. Chem Rev, 2020, 120 (2): 1438-1511.
SECUNDO F. Conformational changes of enzymes upon immobilisation[J]. Chem Soc Rev, 2013, 42 (15): 6250-6261.
TORKZADEH-MAHANI M, ZABOLI M, BARANI M, et al. A combined theoretical and experimental study to improve the thermal stability of recombinant D‐lactate dehydrogenase immobilized on a novel superparamagnetic Fe3O4NPs@metal-organic framework[J].Appl Organometal Chem, 2020, 34: e5581.
WANG D Q, ZHENG P, CHEN P C, et al. Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin[J]. Bioresour Technol, 2021, 323: 124611.
CAO S L, YUE D M, LI X H, et al. Novel nano-/micro-biocatalyst: Soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1,2-octanediol in deep eutectic solvents[J]. ACS Sustainable Chem Eng, 2016, 4: 3586-3595.
WANG S J, WAHIDUZZAMAN M, DAVIS L, et al. A robust zirconium amino acid metal-organic framework for proton conduction[J]. Nat Commun, 2018, 9 (1): 4937.
LYKOURINOU V, CHEN Y, WANG X S, et al. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis[J]. J Am Chem Soc, 2011, 133 (27): 10382-10385.
CHEN Y, LYKOURINOU V, VETROMILE C, et al. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows[J]. J Am Chem Soc, 2012, 134 (32): 13188-13191.
LI P, MODICA J A, HOWARTH A J, et al. Toward design rules for enzyme immobilization in hierarchical mesoporous metal-organic frameworks[J]. Chem, 2016, 1 (1): 154-169.
CHEN Y J, LI P, MODICA J A, et al. Acid-resistant mesoporous metal-organic framework toward oral insulin delivery: Protein encapsulation, protection, and release[J]. J Am Chem Soc, 2018, 140 (17): 5678-5681.
CHEN Y J, JIMENEZ-ANGELES F, QIAO B F, et al.Insights into the enhanced catalytic activity of cytochrome c when encapsulated in a metal-organic framework[J]. J Am Chem Soc, 2020, 142 (43): 18576-18582.
BAYNE L, ULIJN R V, HALLING P J. Effect of pore size on the performance of immobilised enzymes[J]. Chem Soc Rev, 2013, 42 (23): 9000-9010.
HUANG X C, LIN Y Y, ZHANG J P, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc (Ⅱ) imidazolates with unusual zeolitic topologies[J]. Angew Chem Int Ed Engl, 2006, 45 (10): 1557-1559.
LYU F J, ZHANG Y F, ZARE R N, et al. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities[J]. Nano Lett, 2014, 14 (10): 5761-5765.
LIANG W B, WIED P, CARRARO F, et al. Metal-organic framework-based enzyme biocomposites[J]. Chem Rev, 2021, 121 (3): 1077-1129.
HUANG S M, KOU X X, SHEN J, et al. "Armor-plating" enzymes with metal-organic frameworks (MOFs)[J]. Angew Chem Int Ed Engl, 2020, 59 (23): 8786-8798.
CHEN G S, HUANG S M, KOU X X, et al. A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks[J]. Angew Chem Int Ed Engl, 2019, 58 (5): 1463-1467.
CHEN G S, HUANG S M, KOU X X, et al. Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement[J]. Angew Chem Int Ed Engl, 2020, 59 (33): 13947-13954.
CHEN G S, KOU X X, HUANG S M, et al. Modulating the biofunctionality of metal-organic-framework-encapsulated enzymes through controllable embedding patterns[J]. Angew Chem Int Ed Engl, 2020, 59 (7): 2867-2874.
LIANG W B, XU H S, CARRARO F, et al. Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks[J]. J Am Chem Soc, 2019, 141 (6): 2348-2355.
CAO M Y, WANG H ,TANG H R, et al. Enzyme-encapsulated zeolitic imidazolate frameworks formed inside the single glass nanopore: Catalytic performance and sensing application[J]. Anal Chem, 2021, 93: 12257-12264.
LI X, FENG Q, LU K Y, et al. Encapsulating enzyme into metal-organic framework during in-situ growth on cellulose acetate nanofibers as self-powered glucose biosensor[J]. Biosens Bioelectron, 2021, 71: 112690.
GUO J L, YANG L L, GAO Z D, et al. Insight of MOF environment-dependent enzyme activity via MOFs-in-nanochannels configuration[J]. ACS Catalysis, 2020, 10 (10): 5949-5958.
HUO J, AGUILERA-SIGALAT J, EL-HANKARI S, et al. Magnetic MOF microreactors for recyclable size-selective biocatalysis[J]. Chem Sci, 2015, 6 (3): 1938-1943.
CHENG K P, SVEC F, LV Y Q, et al. Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels: Their use for enzyme immobilization and catalysis of knoevenagel reaction[J]. Small, 2019, 15: 1902927.
CHEN S Y, LO W S, HUANG Y D, et al. Probing interactions between metal-organic frameworks and freestanding enzymes in a hollow structure[J]. Nano Lett,2020, 20 (9): 6630-6635.
ZHANG C, ZHANG L, WU W, et al. Artificial super neutrophils for inflammation targeting and HClO generation against tumors and infections[J]. Adv Mater, 2019, 31 (19): e1901179.
CHEN W H, VÁZQUEZ-GONZÁLEZ M, ZOABI A, et al. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles[J]. Nature Catalysis, 2018, 1 (9): 689-695.
CHEN T T, YI J T, ZHAO Y Y, et al. Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins[J]. J Am Chem Soc, 2018, 140 (31): 9912-9920.
WEI T H, WU S H, HUANG Y D, et al. Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks[J]. Nat Commun, 2019, 10 (1): 5002.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构