1.华中科技大学物理学院引力中心,湖北 武汉 430074
2.中山大学物理与天文学院 / 天琴中心,广东 珠海 519082
王秋(1993年生),女;研究方向:高精度MEMS惯性传感器;Email:qiuwang @hust.edu.cn
刘骅锋(1987年生),男;研究方向:高精度MEMS惯性传感器;E-mail:huafengliu@hust.edu.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-04-20,
收稿日期:2021-12-20,
录用日期:2022-02-26
扫 描 看 全 文
王秋,刘骅锋,涂良成.ng级加速度型MEMS微震仪研究[J].中山大学学报(自然科学版),2022,61(06):144-150.
WANG Qiu,LIU Huafeng,TU Liangcheng.Research on the ng-scale MEMS seismometer[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):144-150.
王秋,刘骅锋,涂良成.ng级加速度型MEMS微震仪研究[J].中山大学学报(自然科学版),2022,61(06):144-150. DOI: 10.13471/j.cnki.acta.snus.2021B113.
WANG Qiu,LIU Huafeng,TU Liangcheng.Research on the ng-scale MEMS seismometer[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):144-150. DOI: 10.13471/j.cnki.acta.snus.2021B113.
介绍一种基于微机电系统传感技术(MEMS)制备的ng级微震仪,利用MEMS技术开发的微震仪采用加速度输出,具有极低的固有噪声、高的矢量保真度和良好的低频响应,与已商业化的Nanometrics Trillium Compact微震仪性能相当。MEMS微震仪竖直轴器件采用弹簧结构预拉伸设计来克服地球上1
g
的重力,使得检验质量在正常工作时处于工作点平衡位置。利用基于边缘效应的电容位移传感技术,大幅提高位移传感灵敏度,保证仪器在相同带宽范围内具有与商用微震仪相当的测量分辨率,从而实现对地脉动振动峰观测。采用互谱相关法对MEMS微震仪及商用微震仪采集的数据进行处理,实验评估MEMS微震仪噪声谱密度优于1×10
-8
m/s
2
/ √Hz@0.1~10 Hz(1 ng/√Hz@0.1~10 Hz)。在实验室内,MEMS微震仪成功监测到2019年12月26日18时36分湖北省孝感市发生的4.9级地震,初步证明了MEMS微震仪具有地震监测的能力。本文将对MEMS微震仪的工作原理、结构、工艺加工和静态噪声测试、环境适应性测试、原理样机研制情况进行详细介绍。
In this paper, a ng-scale low-noise seismometer based on Micro-Electro-Mechanical-Systems (MEMS) technology has been introduced. The seismometer developed using MEMS technology presents the characteristics of an acceleration detector, with extremely low inherent noise, high vector fidelity and incredibly low frequency response. Like the commercialized Nanometrics Trillium Compact seismometer, except that the spring vibrator structure of the MEMS seismometer is processed by silicon-based penetration etching. The MEMS seismometer vertical device uses a spring-structure pre-stretch design to overcome the gravity of 1
g
on Earth, so that the inspection mass is in the working point position during normal operation. Significantly, based on the fringe-effect of the capacitive displacement transducers, the instrument has a measurement resolution equivalent to that of a commercial seismometer within the same bandwidth range. So that it has a measurement resolution equivalent to that of a commercial seismometer and can detect the earth tremors in our cave laboratory. The co-spectrum correlation analysis method is used to process the data recorded by the MEMS seismometer and the commercial seismometer at the same time, showing the evaluated noise floor of the proposed MEMS seismometer lower than 1×10
-8
m/s
2
/√Hz@0.1-10 Hz (1 ng/√Hz@0.1-10 Hz). The developed MEMS seismometer in our lab has successfully recorded the earthquake with a magnitude of 4.9 happened in Xiaogan, Hubei at 18:36 on December 26, 2019, preliminarily proving that the MEMS seismometer has seismic monitoring capabilities. The working principle of the MEMS seismometer, the structure, process processing and static noise test, environmental adaptability test, and the development of the principal prototype are introduced in detail in this paper.
MEMS微震仪低噪声地震监测
MEMS seismometerlow-noiseseismic monitoring
LOWRIE W, FICHTNER A. Fundamentals of geophysics[M]. London:Cambridge university press,2007.
LIU H. Design, fabrication and characterization of a MEMS gravity gradiometer[D]. London:Imperial College London,2016.
YAN S, XIE Y, ZHANG M, et al. A subnano-g electrostatic force-rebalanced flexure accelerometer for gravity gradient instruments[J]. Sensors, 2017, 17: 2669.
DAVIES E, GEORGE D S, GOWER M C, et al. MEMS Fabry-Pérot optical accelerometer employing mechanical amplification via a V-beam structure[J]. Sens Actuat A Phys,2014, 215: 22-29.
WU W, LIU D, QIU W, et al. A precise spacing-control method in MEMS packaging for capacitive accelerometer applications[J]. J Micromechanics Microengineering, 2018, 28(12): 125016.
ZHAO C, PANDIT M, SOBREVIELA G, et al. A resonant MEMS accelerometer with 56ng bias stability and 98ng/Hz 1/2 noise floor[J]. J Microelectromechanical Syst, 2019, 28(3): 324-326.
PIKE W T, STANDLEY I M, CALCUTT S B, et al. A broad-band silicon microseismometer with 0.25 ng/rtHz performance[C]. IEEE Micro Electro Mechanical Systems (MEMS), 2018: 113-116.
MIDDLEMISS R P, SAMARELLI A, PAUL D J, et al. Measurement of the earth tides with a MEMS gravimeter[J]. Nature, 2016, 531(7596):614-617.
王秋, 刘骅锋, 涂良成. 面向地球物理应用的高精度MEMS惯性传感器[J]. 导航与控制,2018, 17(6): 1-9.
王秋,刘骅锋,许强伟等. 0.3 ng/Hz1/2超高灵敏度MEMS加速度计研究进展[J]. 中国惯性技术学报,2020,28(1):100-105.
TANG S, LIU H, YAN S, et al. A high-sensitivity MEMS gravimeter with a large dynamic range[J]. Microsyst Nanoeng, 2019, 5: 45.
HOWELL L M S P, HOWELL L L, MAGLEBY S P,et al. Handbook of compliant mechanisms[M].Hoboken: John Wiley & Sons, Inc., 2013.
毕勤胜、李纪刚. 工程力学.下册[M].北京大学出版社,2007.
YI T, LI L, KIM C. Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength[J]. Sens Actuat A Phys, 2000, 83(1/2/3): 172-178.
SHOUP T E, MCLARNAN C W. On the use of the undulating elastica for the analysis of flexible link mechanisms[J]. J Eng Ind ,1971, 93(1): 263-267.
HOLST G L, TEICHERT G H, JENSEN B D. Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms[J]. Journal of Mechanical Design,2011,133(5): 051002.
WANG Q, LI Z, LIU H, et al. MEMS microgravity measurement module with nano-g/Hz noise floor for spaceborne higher-level microgravity scientific experiment applications[J]. ACS Appl Electron Mater, 2021, 3(8): 3379-3390.
BARZILAI A, van ZANDT T, KENNY T. Technique for measurement of the noise of a sensor in the presence of large background signals[J]. Rev Sci Instrum, 1998, 69 (7): 2767-2772.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构