1.国防科技大学气象海洋学院,湖南 长沙 410073
2.西北核技术研究所,陕西 西安 710024
张亮永(1990年生),男;研究方向:近地面爆源参数反演;E-mail:zhangliangyong18@nudt.edu.cn
张德志(1973年生),男;研究方向:爆炸力学效应;E-mail:zhangdezhi@nint.ac.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-05-16,
收稿日期:2021-12-11,
录用日期:2022-01-25
扫 描 看 全 文
张亮永,卢强,肖卫国等.土质场地地面爆炸当量预测方法[J].中山大学学报(自然科学版),2022,61(06):99-112.
ZHANG Liangyong,LU Qiang,XIAO Weiguo,et al.Yield prediction method of surface explosions at soil site[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):99-112.
张亮永,卢强,肖卫国等.土质场地地面爆炸当量预测方法[J].中山大学学报(自然科学版),2022,61(06):99-112. DOI: 10.13471/j.cnki.acta.snus.2021B112.
ZHANG Liangyong,LU Qiang,XIAO Weiguo,et al.Yield prediction method of surface explosions at soil site[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):99-112. DOI: 10.13471/j.cnki.acta.snus.2021B112.
利用某土质场地化爆实验的声震数据,考虑地面反射和地介质耦合作用,对以经验和半经验声学模型为基础的地面爆炸当量预测方法进行了讨论。结合地震波模型,采用声震分析方法分析了地面爆炸当量的预测精度。结果表明:地介质耦合作用对声学方法的地面爆炸当量预测精度影响较大;若不考虑地介质耦合作用,土质场地的当量预测结果明显小于真实值。联合地震波数据增加额外约束进行反演,可以减小当量-爆高(埋深)折中关系,获得较高的当量估计精度。对比多种分析模型发现,采用IPM(improved parametric models)声学模型和近地面声学模型进行声震分析获得的当量预测精度最高。
In order to realize the rapid prediction of surface explosion yield, the surface explosion yield prediction methods were discussed on the basis of empirical and semi-empirical acoustic models, taking into account the influence of ground reflection and ground coupling. Furthermore,the seismic model was combined with acoustic models as seismoacoustic analysis method to analyze the prediction accuracy of surface explosion yield. The results show that the ground coupling affects the prediction accuracy of surface explosion through acoustic methods, and the predicted yield values of soil medium without considering ground coupling are obviously smaller than the true ones. Secondly, the combined seismic data can provide additional constraints which can reduce the trade-off of height-of-burst (depth-of-burial) and yield with high prediction accuracy of yield. Finally, seismoacoustic analysis by adopting IPM(improved parametric models) acoustic model and near-surface acoustic model has the best performance on the prediction accuracy of yield in all analyzed models.
地面爆炸当量预测声学模型声震分析声耦合系数
surface explosionyield predictionacoustic modelseismoacoustic analysisacoustic coupling coefficient
江文彬, 陈颙, 彭菲. 2019年3月江苏响水化工厂爆炸当量的估计[J]. 地球物理学报, 2020, 63(2): 541-550.
OTTEMOLLER L, EVERS L G. Seismo-acoustic analysis of the Buncefield oil depot explosion in the UK, 2005 December 11 [J]. Geophys J Int, 2008, 172: 1123-1134.
KOPER K D, WALLACE T C, REINKE R E, et al. Empirical scaling laws for truck bomb explosions based on seismic and acoustic data [J]. BSSA, 2002, 92(2): 527-542.
DRIELS M R. Weaponeering: Conventional weapon system effectiveness [M]. Virginia: American Institute of Aeronautics Astronautics, Inc, 2012.
KIM K, RODGERS A R, GARCES M A, et al. Empirical acoustic source model for chemical explosions in air [J]. BSSA, 2021. www.bssaonline.orgwww.bssaonline.org.
SCHNURR J, KIM K, GARCES M A, et al. Improved parametric models for explosion pressure signals derived from large datasets [J]. Seismol Res Lett, 2020, 91(3): 1752-1762.
ARROWSMITH S J, WHITAKER R W, MACCARTHY J K, et al. A sources-of-error model for acoustic/infrasonic yield estimation for above-ground single-point explosions [J]. InfraMatics, 2012, 1: 1-9.
GOLDEN P, NEGRARU P, HOWARD J. Infrasound studies for yield estimation of HE explosions [R]. Air Force Research Laboratory, HanscomAFB, MA, 2011-5.
ARROWSMITH S, BOWMAN D. Explosion yield estimation from pressure wave template matching [J]. J Acoust Soc AM, 2017, 141(6): L519-L525.
KIM K, RODGERS A. Waveform inversion of acoustic waves for explosion yield estimation [J]. Geophys Res Lett, 2016, 43: 6883-6890.
BOWMAN D C. Yield and emplacement depth effects on acoustic signals from buried explosions in hard rock [J].BSSA, 2019, 109(3): 944-958.
KIM K, RODGERS A, WRIGHT M. Uncertainty analysis for infrasound waveform inversion: Application to explosion yield estimation [J]. J Acoust Sov AM, 2018, 144(6): 3351-3363.
BLOM P S, DANNEMANN F K, MARCILLO O E. Bayesian characterization of explosive sources using infrasonic signals [J]. Geophys J Int, 2018, 215: 240-251.
American National Standards Institute. Estimating airblast characteristics for single point explosions in air, with a guide to evaluation of atmospheric propagation and effects [S]. ANSI S2.20-1983/ASA 20-1983.
KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. New York: Springer Science+Business Media, 1985: 88-139.
DOUGLAS D A. Blast operational overpressure model (BOOM): An airblast prediction method [R]. Air Force Weapons Laboratory, Kirtland AFB, 1987-4.
FORD S R, RODGERS A J, XU H, et al. Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for near-surface explosions [J]. BSSA, 2014, 104(2): 608-623.
ZHANG L Y, LI X, LIANG X B, et al. Improved seismoacoustic analysis model and its application to source parameter inversion of near-surface small-yield chemical explosions [J]. Appl Geophys, 2021, 18(1): 17-30.
PASYANOS M E, KIM K. Seismoacoustic analysis of chemical explosions at the Nevada National Security Site [J]. JGR: Solid Earth, 2018, 124: 908-924.
FORD R D, SAUNDERS D J, KERRY G. The acoustic pressure waveform from small unconfined charges of plastic explosive [J]. J Acoust Soc Am, 1993, 94(1): 408-417.
FORD S R, BULAEVSKAYA V, RAMIREZ A, et al. Joint bayesian inference for near-surface explosion yield and height-of-burst [J]. JGR: Solid Earth, 2021, 126: 1-20.
BONNER J, WAXLER R, GITTERMAN Y, et al. Seismo-acoustic energy partitioning at near-source and local distances from the 2011 Sayarim explosions in the Negev Desert, Israel [J]. BSSA, 2013, 103(2A): 741-758.
TEMPLETON D C, FORD S R, RODGERS A J, et al. Seismic models for near-surface explosion yield estimation in alluvium and sedimentary rock [J]. BSSA, 2018, 108: 1384-1398.
SACHS R G.The dependence of blast on ambient pressure and temperature [R].Army Ballistic Research Laboratories, Aberdeen Proving Ground, MD, 1944-5.
REED J W. Explosion airblast predictions on a personal computer and application to the Henderson, Nevada, Incident [R]. Sandia National Laboratories, Albuquerque, New Mexico, 1988:12.
International Organization for Standardization. Acoustics-Impulse sound propagation for environmental noise assessment [S]. ISO/TS 13474:2003(E).
ARROWSMITH S J, JOHNSON J B, DROB D P, et al. The seismoacoustic wavefield:A new paradigm in studying geophysical phenomena [J]. Rev Geophys, 2010, 48: 1-23.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构