1.中山大学智能工程学院,广东 广州 510006
2.广东省交通环境智能监测与治理工程技术研究中心,广东 广州 510275
3.广东省环境科学研究院,广东 广州 510045
4.广东工业大学土木与交通工程学院,广东 广州 510006
陈同(1994年生),男;研究方向:交通尾气污染评估;E-mail:chent239@mail2.sysu.edu.cn
刘永红(1977年生),女;研究方向:交通尾气污染控制;E-mail:liuyh3@mail.sysu.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2022-01-21,
收稿日期:2021-05-24,
录用日期:2021-06-25
扫 描 看 全 文
陈同,罗银萍,陈进财等.含高架桥的实际街区交通颗粒物扩散模拟[J].中山大学学报(自然科学版),2022,61(04):119-132.
CHEN Tong,LUO Yinping,CHEN Jincai,et al.Numerical simulation of traffic-related particle dispersion in a real built-up area with a viaduct[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):119-132.
陈同,罗银萍,陈进财等.含高架桥的实际街区交通颗粒物扩散模拟[J].中山大学学报(自然科学版),2022,61(04):119-132. DOI: 10.13471/j.cnki.acta.snus.2021B052.
CHEN Tong,LUO Yinping,CHEN Jincai,et al.Numerical simulation of traffic-related particle dispersion in a real built-up area with a viaduct[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):119-132. DOI: 10.13471/j.cnki.acta.snus.2021B052.
结合实地观测实验,构建了包含高架桥的实际街区颗粒物扩散沉积模型,研究不同时段的交通颗粒物扩散,并分析来流风向变化时的街区流场和颗粒物分布特征以及高架桥设置的影响。研究发现:(1)弯道阻碍来流风进入街谷中段,是造成街谷在平行风下仍存在严重污染的主要原因;(2)东南方向建筑稀少的十字交叉口设置迫使东侧风进入北侧及西侧街谷内,北侧街谷的颗粒物仅分布在道路中间,极大减少了两侧居民的污染暴露;(3)街区局部位置(如弯道和交叉口)流场及颗粒物分布对来流风向小幅变化的响应极为敏感;(4)高街谷建筑形状因子下,垂直风时高架排放源使两侧建筑上部的颗粒物浓度出现明显突增或保持高浓度水平,最高可达行人呼吸高度处颗粒物浓度的84%,较平行风下同位置浓度高出一个量级;(5)高架桥对实际街区不同街谷流场和颗粒物分布的影响存在差异。垂直入流时,下阶梯型街谷内涡流中心抬升至高架桥上部,颗粒物聚集在背风侧建筑物上;而上阶梯型街谷内涡流中心被压至高架桥底部,颗粒物堆积在高架桥下方。
Based on the data from field observations, a numerical model of particle diffusion and deposition in a real built-up area with viaduct was constructed. The traffic-related particle dispersion during different time periods was studied. The characteristics of flow field and pollutant dispersion were analyzed under different wind directions, and the impacts of the viaduct were also discussed. The bend obstructed incoming wind from entering the middle of the street canyon, which was the main cause of serious pollution in the street canyon in parallel windward. The intersection with fewer buildings on the southeast forced the east wind to enter the north and west side street canyon. Particles in the north side street canyon were only distributed in the middle of the road, greatly reducing the pollution exposure of residents on both sides. The flow field and particle distribution at local locations (such as bends and intersections) were sensitive to small changes in incoming wind direction. Under the high street shape factor, the particle concentrations near the upper part of buildings on both sides increased sharply or maintained a high level, which was up to 84% of the pedestrian breathing height and an order of magnitude higher than that in the same position under parallel wind. The impacts of viaduct settings on the flow field and particle distributions in different street canyons were different. When vertical inflow occurred, the vortex center in lower stepped street canyon was above the viaduct, and particles gathered on the leeward side building; the vortex center in upper stepped street canyon was at the bottom of the viaduct, and particles accumulated under the viaduct.
城市街区高架桥颗粒物扩散模拟
urban built-up areaviaductparticlesdispersion modeling
CHOI W, RANASINGHE D, BUNAVAGE K, et al. The effects of the built environment, traffic patterns, and micrometeorology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites[J].Science of the Total Environment, 2016,553:474-485.
FU X, LIU J , BAN-WEISS G A , et al.Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model[J].Atmospheric Environment, 2017,165:111-121.
MARTINS N R, GRAÇA C D G.Impact of PM2.5 in indoor urban environments: A review [J]. Sustainable Cities and Society, 2018,42:259-275.
RIZZA V, STABILE L, VISTOCCO D, et al.Effects of the exposure to ultrafine particles on heart rate in a healthy population[J].Science of the Total Environment, 2019,650:2403-2410.
FAN Z, PUN V C, CHEN X C, et al. Personal exposure to fine particles and respiratory inflammation of common residents in Hong Kong[J]. Environmental Research, 2018,164:24-31.
BARATIAN-GHORGHI Z, KAYE N B. The effect of canyon aspect ratio on flushing of dense pollutants from an isolated street canyon [J]. Science of the Total Environment, 2013,443:112-122.
SUN J, ZHANG Y. Influence of avenue trees on traffic pollutant dispersion in asymmetric street canyons: Numerical modeling with empirical analysis [J]. Transportation Research D: Transport and Environment, 2018,65:784-795.
TAN Z , DONG J , XIAO Y , et al. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons [J] .Atmospheric Environment, 2015,104:217-227.
HANG J , LUO Z , WANG X , et al.The influence of street layouts and viaduct settings on daily carbon monoxide exposure and intake fraction in idealized urban canyons[J].Environmental Pollution, 2017,220:72-86.
秦成君,宋翀芳,王世杰,等. 垂直风向下双层高架桥理想街谷内空气环境的数值研究[J].环境科学学报, 2018,38(9):3467-3474.
黄玉婷,刘永红,徐伟嘉,等.高架桥附近交通状态对PM2.5分布影响的模拟研究 [J].环境科学与技术,2018,41(8):71-78.
HE L, HANG J, WANG X, et al. Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings[J].Science of the Total Environment, 2017,584/585:189-206.
邵毅,张述文,左洪超,等.榆中县城大气污染物扩散的观测实验与数值模拟[J].中国环境科学, 2013,33(7):1223-1230.
SANTIAGO J L, BORGE R, MARTIN F, et al. Evaluation of a CFD-based approach to estimate pollutant distribution within a real urban canopy by means of passive samplers[J].Science of the Total Environment, 2017,576:46-58.
KWAK K H, BAIK J J, RYU Y H, et al. Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models [J]. Atmospheric Environment, 2015,100:167-177.
苏军伟,王乐,张云伟,等.隔声屏障对街道峡谷污染物扩散的影响[J].环境工程,2016,34(10):92-97.
TOMINAGA Y, STATHOPOULOS T. CFD simulations of near-field pollutant dispersion with different plume buoyancies[J].Building and Environment, 2018,131:128-139.
HANG J, XIAN Z, WANG D, et al. The impacts of viaduct settings and street aspect ratios on personal intake fraction in three-dimensional urban-like geometries[J].Building and Environment, 2018,133:138-162.
张传福,曾建荣,文谋,等.高架桥对街道峡谷内大气颗粒物输运的影响[J].环境科学研究,2012,25(2):159-164.
中华人民共和国生态环境部.道路机动车大气污染物排放清单编制技术指南(试行)[EB/OL].(2019-03-28)[2021-05-24]. http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdfhttp://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdf.
田丰,余志,蔡铭. 街道峡谷型交叉口内气态污染物扩散的数值模拟 [J]. 环境科学研究, 2008(2):79-83.
杨方,钟珂,亢燕铭. 街道峡谷对称性对污染物扩散的影响[J].中国环境科学, 2015,35(3):706-713.
陈凡涛,赵文吉,晏星,等. 不对称街谷内PM2.5浓度垂直分布特征及成因[J].环境工程学报, 2016,10(3):1333-1339.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构