中山大学地球科学与工程学院,广东 珠海 519082
李日升(1995年生),男;研究方向:岩土工程;E-mail:lirsh6@mail2.sysu.edu.cn
张澄博(1970年生),男;研究方向:水文地质与工程地质;E-mail:eeszcb@mail.sysu.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2022-01-26,
收稿日期:2021-05-12,
录用日期:2021-06-04
扫 描 看 全 文
李日升,张澄博,杨明等.基于MICP改性的广州南沙区水泥土的强度及微观特征[J].中山大学学报(自然科学版),2022,61(04):133-141.
LI Risheng,ZHANG Chengbo,YANG Ming,et al.Strength and microstructure characteristics of MICP-modified cement soil in Nansha District of Guangzhou[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):133-141.
李日升,张澄博,杨明等.基于MICP改性的广州南沙区水泥土的强度及微观特征[J].中山大学学报(自然科学版),2022,61(04):133-141. DOI: 10.13471/j.cnki.acta.snus.2021B045.
LI Risheng,ZHANG Chengbo,YANG Ming,et al.Strength and microstructure characteristics of MICP-modified cement soil in Nansha District of Guangzhou[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):133-141. DOI: 10.13471/j.cnki.acta.snus.2021B045.
利用微生物诱导碳酸钙沉淀(MICP,microbial induced carbonate precipitation)技术,研究了改善广州南沙区水泥土强度的可行性。将巴氏芽孢杆菌菌液和尿素混合溶液制成菌液组水泥土试样,与空白对照组、培养基组试样的无侧限抗压强度进行比较,并通过离子浓度监测、XRD、SEM和压汞实验研究了细菌对水泥土微观结构的影响,探讨了强度改善的机理。实验结果表明:菌液组水泥土在第7天、14天、28天的抗压强度分别比空白对照组高91.3%、53.4%、45.3%,改善幅度随养护时间增加而降低。菌液中的培养基和尿素对水泥土强度存在负面影响。巴氏芽孢杆菌在菌液组水泥土内部发生尿素水解反应并提供成核位置,促使大量游离Ca
2+
转为含钙矿物沉淀,生成了更多的方解石和水化硅酸钙(C - S - H),减小了孔隙体积和孔径尺寸,使水泥土内部颗粒连结和空间结构更紧密,从而改善了水泥土的强度。
The feasibility of using microbial induced carbonate precipitation (MICP) to improve the strength of cement soil in Nansha District of Guangzhou is studied. The unconfined compressive strength of the bacteria solution group cement soil, made by the mixed solution of bacteria solution and urea, is compared with the control group and the medium group. The effect of bacteria on the microstructure of cement soil is studied by ion concentration monitoring, XRD, SEM and mercury intrusion test, and the mechanism of strength improvement is discussed. The experimental results show that the compressive strength of 7 days, 14 days and 28 days in the bacteria solution group is 91.3%, 53.4% and 45.3% higher than that in the control group respectively, and the improvement range decreases with the increase of curing time. The medium and urea have negative effects on the strength of cement soil. Sporosarcina pasteurii hydrolyzes urea and provides nucleation site in the bacteria solution group cement soil, which promotes a large number of free Ca
2+
to transform into calcium mineral precipitation, generates more calcite and hydrated calcium silicate (C-S-H), reduces the pore volume and pore size, makes the internal particle connection and spatial structure of cement soil more compact, thus improving the strength of cement soil.
水泥土微生物诱导碳酸钙沉淀尿素水解微观结构
cement soilMICPurea hydrolysismicrostructure
周翠英, 牟春梅. 珠江三角洲软土分布及其结构类型划分[J]. 中山大学学报(自然科学版), 2004,43(6): 81-84.
娄云雷, 李洪艺, 张碧龙, 等. 真空预压-电动条件下珠三角地区软土力学性质变化过程研究[J]. 中山大学学报(自然科学版), 2015, 54(1): 64-69.
张玉成, 杨光华, 胡海英, 等. 珠三角深厚软土地区浅基坑支护若干问题探讨[J]. 岩土工程学报, 2014, 36(增刊1): 1-11.
徐立胜, 陈忠, 张研. 水泥土搅拌法的室内试验研究[J]. 河海大学学报(自然科学版), 2010, 38(4): 433-435.
阮波, 阮庆, 田晓涛, 等. 淤泥质粉质黏土水泥土无侧限抗压强度影响因素的正交试验研究[J]. 铁道科学与工程学报, 2013, 10(6): 45-48.
薛慧君, 申向东, 邹春霞, 等. 水泥土早期力学性能影响因素分析[J]. 硅酸盐通报, 2014, 33(8): 2056-2062.
梁仁旺, 张明, 白晓红. 水泥土的力学性能试验研究[J]. 岩土力学, 2001(2): 211-213.
DEJONG J T, SOGA K, BANWART S A, et al. Soil engineering in vivo: Harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions[J]. Journal of the Royal Society Interface, 2011, 8(54): 1-15.
练继建, 高毛毛, 闫玥, 等. 基于MICP技术的自修复混凝土研究进展[J]. 南水北调与水利科技, 2019, 17(1): 164-177.
王立成, 邹凯. 混凝土微生物自愈合技术研究进展[J]. 硅酸盐学报, 2019, 47(11): 1652-1662.
MAHESWARAN S, DASURU S S, MURTHY A R C, et al. Strength improvement studies using new type wild strain Bacillus cereus on cement mortar[J]. Current Science, 2014, 106(1): 50-57.
AMER A H, ABU B S, RAHMAN M,et al. Insight into the role of microbial calcium carbonate and the factors involved in self-healing concrete[J]. Construction and Building Materials, 2020, 254: 119258.
ACHAL V, MUKHERJEE A, REDDY M,et al. Microbial concrete: Way to enhance the durability of building structures[J]. Journal of Materials in Civil Engineering, 2011, 23(6): 730-734.
BUNDUR Z B, BAE S, KIRISITS M J, et al. Biomineralization in self-healing cement-based materials: Investigating the temporal evolution of microbial metabolic state and material porosity[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 04017079.
BUNDUR Z B, KIRISITS M J, FERRON R D. Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength[J]. Cement and Concrete Research, 2015, 67: 237-245.
储诚富. 水泥土搅拌法加固特殊软土的试验与应用研究[D]. 南京: 东南大学, 2005.
HUNTER D. Lime‐induced heave in sulfate‐bearing clay soils[J]. Journal of Geotechnical Engineering, American Society of Civil Engineers, 1988, 114(2): 150-167.
MORTENSEN B M, HABER M J, DEJONG J T, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. Journal of Applied Microbiology, 2011, 111(2): 338-349.
RODRIGUEZ-NAVARRO C, JROUNDI F, SCHIRO M, et al. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications for stone conservation[J]. Applied and Environmental Microbiology, 2012, 78(11): 4017-4029.
尹黎阳, 唐朝生, 谢约翰, 等. 微生物矿化作用改善岩土材料性能的影响因素[J]. 岩土力学, 2019, 40(7): 2525-2546.
BUNDUR Z B, KIRISITS M J, FERRON R D. Use of pre-wetted lightweight fine expanded shale aggregates as internal nutrient reservoirs for microorganisms in bio-mineralized mortar[J]. Cement and Concrete Composites, 2017, 84: 167-174.
WILLIAMS S L, KIRISITS M J, FERRON R D. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(4): 567-575.
WILLIAMS S L, KIRISITS M J, FERRON R D. Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete[J]. Construction and Building Materials, 2017, 139: 611-618.
WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Perth: Murdoch University, 2004.
车东日, 罗春泳, 沈水龙. 水泥混合上海黏土pH值和电导率与强度特性研究[J]. 岩土力学, 2012, 33(12): 3611-3615.
OKWADHA G D O, LI J. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81(9): 1143-1148.
ACHAL V, PAN X. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2[J]. Applied Biochemistry and Biotechnology, 2014, 173(1): 307-317.
MONDAL S, GHOSH A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete[J]. Construction and Building Materials, 2018, 183: 202-214.
ASTM. D6919-17, Standard test method for determination of dissolved alkali and alkaline earth cations and ammonium in water and wastewater by ion chromatography[S]. USA: ASTM, 2017.
DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cement and Concrete Research, 2008, 38(7): 1005-1014.
LI M, ZHU X, MUKHERJEE A, et al. Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content[J]. Journal of Hazardous Materials, 2017, 329: 178-184.
WANG L, JU S, CHU H, et al. Hydration process and microstructure evolution of low exothermic concrete produced with urea[J]. Construction and Building Materials, 2020, 248: 118640.
SANG S, DAI H, HU B X, et al. The study of hydrogeochemical environments and microbial communities along a groundwater salinity gradient in the Pearl River Delta, China[J]. Water, 2019, 11(4): 804.
GOMEZ M G, GRADDY C M R, DEJONG J T, et al. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 04017098.
CHAURASIA L, BISHT V, SINGH L P, et al. A novel approach of biomineralization for improving micro and macro-properties of concrete[J]. Construction and Building Materials, 2019, 195: 340-351.
王潇猛, 钱春香, 陈燕强, 等. 微生物矿化对C3S硬化浆体表层微观结构的影响[J]. 东南大学学报(自然科学版), 2020, 50(6): 1023-1029.
FRANKEL R B, BAZYLINSKI D A. Biologically induced mineralization by bacteria[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 95-114.
钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.
WANG Y, SOGA K, DEJONG J T, et al. Microscale visualization of microbial-induced calcium carbonate precipitation processes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019045.
ABDULKAREEM M, AYERONFE F, MAJID M Z A, et al. Evaluation of effects of multi-varied atmospheric curing conditions on compressive strength of bacterial (Bacillus subtilis) cement mortar[J]. Construction and Building Materials, 2019, 218: 1-7.
SAHOO K K, SATHYAN A K, KUMARI C, et al. Investigation of cement mortar incorporating Bacillus sphaericus[J]. International Journal of Smart and Nano Materials, 2016, 7(2): 91-105.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构