1.中山大学航空航天学院,广东 深圳 518107
2.中山大学物理学院,广东 广州 510275
张本龙(1995年生),男;研究方向:固体力学;E-mail:zhangbl7@mail2.sysu.edu.cn
刘玉岚(1962年生),女;研究方向:功能材料力学;E-mail:stslyl@mail.sysu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-12,
收稿日期:2021-03-24,
录用日期:2021-05-28
扫 描 看 全 文
张本龙,李嘉颖,许泽等.锂离子电池充放电过程电极裂纹扩展分析[J].中山大学学报(自然科学版),2022,61(03):93-100.
ZHANG Benlong,LI Jiaying,XU Ze,et al.Analysis of electrode crack propagation in Lithium battery during charge process[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):93-100.
张本龙,李嘉颖,许泽等.锂离子电池充放电过程电极裂纹扩展分析[J].中山大学学报(自然科学版),2022,61(03):93-100. DOI: 10.13471/j.cnki.acta.snus.2021B040.
ZHANG Benlong,LI Jiaying,XU Ze,et al.Analysis of electrode crack propagation in Lithium battery during charge process[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):93-100. DOI: 10.13471/j.cnki.acta.snus.2021B040.
采用基于有限变形理论和扩散诱导应力假设的本构方程,建立了三维直角坐标下张量形式的锂离子扩散—应力耦合模型。利用有限元法,结合断裂理论中的K准则,判定裂纹的开裂。将该模型应用到柱形电极和球形电极上,在其中添加三维裂纹,研究应力强度因子与裂纹尺寸的关系;并结合材料的断裂韧性,得到了裂纹开裂的临界尺寸
a
min
。研究发现:电极中长度超过临界尺寸的裂纹将扩展,柱形电极中沿轴向发展的裂纹将持续扩展直至贯穿,沿径向发展的裂纹将逐渐稳定不会贯穿;球形电极中的裂纹也将逐渐稳定,贯穿与否取决于电极尺寸。且该三维模型不仅仅限于轴对称情况,还适用于包含任意缺陷形式的颗粒电极,具有普遍意义。研究成果可对颗粒电极内部缺陷筛查提出优化建议。
A lithium-ion diffusion-stress coupling model in the form of a tensor in three-dimensional rectangular coordinates was established using the constitutive equation constructed by the finite deformation theory and the diffusion-induced stress hypothesis. Combined with the K criterion in fracture theory, the expansion of crack is determined by using the finite element method. The model is applied to the column electrodes and spherical electrodes, where three-dimensional cracks are added to study the relationship between stress strength factors and crack size. Combined with the fracture toughness of the material, the critical size of crack propagation is obtained. Cracks in the electrode that are longer than the critical size will expand, cracks in the column electrode developing in axial direction will continue to expand until they run through, cracks along radial development will gradually stabilize and will not run through, and cracks in the spherical electrode will gradually stabilize, depending on the size of the electrode. The 3D model is not limited to axis symmetry, but is suitable for particle electrodes containing any form of defect, which is of general significance, and the results can make optimization recommendations for the screening of particle electrode internal defects.
锂离子电池扩散诱导应力裂纹扩展K准则
Lithium batterydiffusion induced stresscrack propagationK criterion
BROUSSELY M. Recent developments on lithium ion batteries at SAFT[J]. Journal of Power Sources, 1999, 81 : 140-143.
DAVID C, LEIF E. Thermal and diffusion induced stresses in a structural battery under galvanostatic cycling[J]. Composites Science and Technology, 2019, 179 : 69-78.
LI C M . Physical chemistry of some microstructural phenomena[J]. Metallurgical Transactions A, 1978, 9(10):1353-1380.
CUI Z, FENG G, QU J. A finite deformation stress-dependent chemical potential and its applications to lithium-ion batteries[J]. Journal of the Mechanics & Physics of Solids, 2012, 60(7):1280-1295.
CUI Z, GAO F, QU J. Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 293-310.
ZHANG X C ,WEI S,SASTRY A M . Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles[J]. Journal of the Electrochemical Society , 2007,154 (10): A910-A916.
MA Z S, GAO X, WANG Y, et al .Effects of size and concentration on diffusion-induced stress in lithium-ion batteries [J].Journal of Applied Physics ,2016,120:025302.
彭颖吒,张锴,郑百林,等.广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析[J].物理学报,2016,65(10):5-12.
XING H , LIU Y , WANG B . Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery[J]. Acta Mechanica, 2019, 230(12):4145-4156.
ZHONG Y , LIU Y , WANG B . Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery[J]. AIP Advances, 2017, 7(7):359.
UDAY K J, WANG C S, APPLEBY A J . Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J].Journal of Power Sources, 2006, 163(2): 1003-1039.
LIU X H. Size-dependent fracture of silicon nanoparticles during lithiation[J].ACS Nano, 2012, 6(2) : 1522-1531.
ZHU M , PARK J , SASTRY A M . Fracture analysis of the cathode in Li-Ion batteries: A simulation study[J]. Journal of the Electrochemical Society, 2012, 159(4):A492.
KLINSMANN M , ROSATO D , KAMLAH M , et al. Modeling crack growth during Li extraction and insertion within the second half cycle[J]. Journal of Power Sources, 2016, 331(1):32-42.
GAO Y F , ZHOU M . Coupled mechano-diffusional driving forces for fracture in electrode materials[J]. Journal of Power Sources, 2013, 230(15):176-193.
詹思远,郑百林,张锴.柱状电极屈曲或裂纹扩展的临界力学参数研究[J].力学季刊,2020,41(1):136-146.
WOODFORD W H , CHIANG Y M , CARTER W C ."Electrochemical shock" of intercalation electrodes: A fracture mechanics analysis[J]. Journal of the Electrochemical Society, 2010, 157(10):A1052-A1059.
BHANDAKKAR T K , GAO H . Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses[J]. International Journal of Solids & Structures, 2011, 48(16/17):2304-2309.
MUHAMMAD M , HUGUES-YANIS A , RICCARDO M , et al. A comparison of microscale techniques for determining fracture toughness of LiMn2O4 particles[J]. Materials, 2017, 10(4):403.
LI Y , ZHANG K , ZHENG B , et al. Effect of local velocity on diffusion-induced stress in large-deformation electrodes of lithium-ion batteries[J]. Journal of Power Sources, 2016, 319(1):16.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构