中山大学航空航天学院,广东 广州 510006
姜宏杰(1996年生),男;研究方向:非线性振动;E-mail:jianghj7@mail2.sysu.edu.cn
刘广(1992年生),男;研究方向:非线性振动、参数识别等;E-mail:liug36@mail.sysu.edu.cn
纸质出版日期:2022-09-25,
网络出版日期:2022-01-26,
收稿日期:2021-04-17,
录用日期:2021-05-21
扫 描 看 全 文
姜宏杰,刘祚秋,吕中荣等.基于Adams离散和Newmark-,β法求解分数阶van der Pol系统[J].中山大学学报(自然科学版),2022,61(05):126-132.
JIANG Hongjie,LIU Zuoqiu,LU Zhongrong,et al.Solving fractional van der Pol system based on Adams discretization and Newmark-,β method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):126-132.
姜宏杰,刘祚秋,吕中荣等.基于Adams离散和Newmark-,β法求解分数阶van der Pol系统[J].中山大学学报(自然科学版),2022,61(05):126-132. DOI: 10.13471/j.cnki.acta.snus.2021B034.
JIANG Hongjie,LIU Zuoqiu,LU Zhongrong,et al.Solving fractional van der Pol system based on Adams discretization and Newmark-,β method[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):126-132. DOI: 10.13471/j.cnki.acta.snus.2021B034.
文章着重研究了含分数阶微分算子的van der Pol方程的数值解法。首先,基于Adams离散提出了一种针对Caputo分数阶导数的离散格式;然后,进一步基于Newmark-
β
法构造了完整的逐步迭代格式;最后,通过Newton-Raphson迭代求得了非线性系统的响应。在算例分析部分,讨论了分数阶次为
<math id="M1"><mn mathvariant="normal">0</mn><mo><</mo><mi>α</mi><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438686&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438632&type=
12.78466606
2.28600001
和
<math id="M2"><mn mathvariant="normal">1</mn><mo><</mo><mi>α</mi><mo><</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438754&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438723&type=
12.78466606
2.28600001
的van der Pol系统的数值响应。当
<math id="M3"><mi>α</mi><mo>→</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438801&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438783&type=
8.72066593
2.28600001
和
<math id="M4"><mi>α</mi><mo>→</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438866&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438845&type=
8.72066593
2.28600001
时,将所提算法和四阶Runge-Kutta法进行了对比。结果表明,所提数值方法对整数阶微分系统也同样适用。
This paper focuses on the numerical solution method of the van der Pol equation with fractional differential operators. In this paper, a discretization scheme based on the Adams discretization is proposed for Caputo fractional derivative. Then, a complete iterative scheme is constructed based on the Newmark-
β
method. Finally, the numerical solution of the nonlinear discretization equation is obtained by Newton-Raphson iteration. In the numerical examples, the numerical responses of van der Pol systems with fractional order
<math id="M5"><mn mathvariant="normal">0</mn><mo><</mo><mi>α</mi><mo><</mo><mn mathvariant="normal">1</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441798&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441781&type=
14.90133286
2.70933342
and
<math id="M6"><mn mathvariant="normal">1</mn><mo><</mo><mi>α</mi><mo><</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441816&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441797&type=
14.90133286
2.62466669
are discussed respectively. Moreover, the comparison between the proposed method and the fourth-order Runge-Kutta method is also discussed. The results proved that the proposed numerical scheme is also suitable for integer-order differential systems.
分数阶导数van der Pol系统Adams离散Newmark-β法数值解
fractional-order derivativevan der Pol systemAdams discretizationNewmark-β methodnumerical solution
张丹伟, 刘济科, 黄建亮. 非线性系统准周期振动的多时间尺度IHB法[J]. 中山大学学报(自然科学版), 2018, 57(6): 63-70.
牛江川, 申永军, 杨绍普,等. 分数阶PID控制对单自由度线性振子的影响[J]. 振动与冲击, 2016, 35(24): 88-95.
LIU G , WANG L , LUO W L , et al. Parameter identification of fractional order system using enhanced response sensitivity approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 67: 492-505.
刘广, 刘济科, 吕中荣. 基于时域响应灵敏度分析的非线性系统参数识别[J]. 振动与冲击, 2018, 37(21): 213-219.
LIU G, WANG L, LIU J K, et al. Parameter identification of nonlinear aeroelastic system with time-delayed feedback control[J]. AIAA Journal, 2019, 58(1): 415-425.
LEUNG Y T, YANG H X, GUO Z J. The residue harmonic balance for fractional order van der Pol like oscillators[J]. Journal of Sound and Vibration, 2011,331(5): 1115-1126.
BARBOSA R S , MACHADO J A T , VINAGRE B M ,et al. Analysis of the van der Pol oscillator containing derivatives of fractional order[J]. Journal of Vibration and Control, 2007, 13(9/10): 1291-1301.
CHEN J H , CHEN W C . Chaotic dynamics of the fractionally damped van der Pol equation[J]. Chaos, Solitons & Fractals, 2006, 35(1): 188-198.
毛北行, 李巧利. 一类分数阶Duffling-van der pol系统的混沌同步[J]. 吉林大学学报(理学版), 2016, 54(2): 369-373.
韦鹏, 申永军, 杨绍普. 分数阶van der Pol振子的超谐共振[J]. 物理学报, 2014, 63(1): 47-58.
WU B S , LIM C W . Large amplitude non-linear oscillations of a general conservative system[J]. International Journal of Non-Linear Mechanics, 2004, 39(5): 859-870.
LIU G, LU Z R, WANG L, et al. A new semi-analytical technique for nonlinear systems based on response sensitivity <math id="M129"><mi mathvariant="normal">a</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">y</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">s</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441858&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441847&type=10.075333602.96333337[J]. Nonlinear Dynamics, 2021, 103(2): 1529-1551.
刘洋, 李承楚, 牟永光. 任意偶数阶精度有限差分法数值模拟[J]. 石油地球物理勘探, 1998, 33(1): 1-10.
PRINCE P J , DORMAND J R . High order embedded Runge-Kutta formulae[J]. Journal of Computation and Applied<math id="M130"><mi mathvariant="normal">M</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">h</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">m</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">s</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441869&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441854&type=15.832667352.28600001, 1981, 7(1): 67-75.
富明慧, 刘祚秋, 林敬华. 一种广义精细积分法[J]. 力学学报, 2007(5): 672-677.
DIETHELM K , FORD N J , FREED A D . A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics, 2002, 29(1/4): 3-22.
雷金贵, 陈文兵.一类解非线性方程的Newton型迭代法[J]. 南京信息工程大学学报(自然科学版),2009,1(4): 377-381.
WEN S F , SHEN Y J , LI X H ,et al. Dynamical analysis of mathieu equation with two kinds of van der Pol fractional-order terms[J]. International Journal of Non-Linear Mechanics, 2016, 84: 130-138.
LIN R , LIU F . Fractional high order methods for the nonlinear fractional ordinary differential equation[J]. Nonlinear <math id="M131"><mi mathvariant="normal">A</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">y</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">s</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441893&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441888&type=10.752667432.96333337:Theory,Methods & Applications, 2005, 66(4): 856-869.
MEERSCHAERT M M , SCHEFFLER H P , TADJERAN C . Finite difference methods for two-dimensional fractional <math id="M132"><mi mathvariant="normal">d</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">p</mi><mi mathvariant="normal">e</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">s</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441887&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441897&type=12.869333272.96333337 equation[J]. Journal of Computational Physics, 2005, 211(1): 249-261.
MACDONALD C L , BHATTACHARYA N , SPROUSE B P , et al. Efficient computation of the Grünwald-Letnikov <math id="M133"><mi mathvariant="normal">f</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">t</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi><mi mathvariant="normal">a</mi><mi mathvariant="normal">l</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441910&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441906&type=11.768667222.28600001 diffusion derivative using adaptive time step memory[J]. Journal of Computational Physics, 2015, 297: 221-236.
李亚杰, 吴志强, 章国齐.基于Caputo导数的分数阶非线性振动系统响应计算[J].计算力学学报, 2018, 35(4): 466-472.
ZAID O . Approximations of fractional integrals and Caputo fractional derivatives[J]. Applied Mathematics and Computations, 2005, 178(2): 527-533.
LIU Q X , LIU J K , CHEN Y M . An explicit hybrid method for multi-term fractional differential equations based on Adams and Runge-Kutta schemes[J]. Nonlinear Dynamics, 2016, 84(4): 2195-2203.
刘广, 刘济科, 陈衍茂. 基于Wilson-θ和Newmark-β法的非线性动力学方程改进算法[J].计算力学学报, 2017,34(4):433-439.
LU Z R , LIU G , LIU J K , et al. Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach[J]. Nonlinear Dynamics, 2019, 95(2): 1495-1512.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构