1.中山大学智能工程学院 / 广东省智能交通系统重点实验室,广东 广州 510006
2.广东省交通环境智能监测与治理工程技术研究中心,广东 广州 510275
王敏亦(1994年生),女;研究方向:智能交通;E-mail:wangmy68@mail2.sysu.edu.cn
刘永红(1977年生),女;研究方向:大气环境及机动车污染控制;E-mail:liuyh3@mail.sysu.edu.cn
纸质出版日期:2023-01-25,
网络出版日期:2022-10-06,
收稿日期:2021-03-21,
录用日期:2021-05-08
扫 描 看 全 文
王敏亦,丁卉,李丽等.基于视频卡口数据的外地车辆出行和技术参数时变特征分析[J].中山大学学报(自然科学版),2023,62(01):106-114.
WANG Minyi,DING Hui,LI Li,et al.Analysis of non-local vehicle travel and technical parameters time-varying characteristics based on video bayonet data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):106-114.
王敏亦,丁卉,李丽等.基于视频卡口数据的外地车辆出行和技术参数时变特征分析[J].中山大学学报(自然科学版),2023,62(01):106-114. DOI: 10.13471/j.cnki.acta.snus.2021B020.
WANG Minyi,DING Hui,LI Li,et al.Analysis of non-local vehicle travel and technical parameters time-varying characteristics based on video bayonet data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(01):106-114. DOI: 10.13471/j.cnki.acta.snus.2021B020.
通过佛山市视频卡口获得2017年全市逐秒过车车牌记录数据,分析佛山一环内和一环外外地车小时尺度的分车型结构、道路类型的出行和技术参数时变特征。结果表明:(1)外地车日均出行量占全市的24.11%,与大型省会城市外地车占比(23%)相近,其中重型和轻型车流量在佛山一环内和一环外差异明显(超过50%)。(2)外地车车籍主要为广东的广州、肇庆,以及广西和浙江,且主要分布在广佛连接通道上。省内外地车中,货车的排放标准主要为国IV(38.9%~44.6%),燃料类型主要为柴油(78.0%~78.4%)。(3)从小时流量来看,外地车在佛山一环内的小时流量高于佛山一环外,且外地车总流量及各车型分布下的白天车流量均是夜间的3倍左右;从省内外地车的排放标准来看,国Ⅳ车的小时流量占比最高;同时外地车主要出现在快速路和国省道上。
The second-by-second vehicle license plate record data in 2017 was obtained through the Foshan video bayonet. Taking “Foshan First Ring Road” as the boundary, the hourly-scale different vehicle types of non-local vehicles inside and outside the region, the travel and technology parameters time-varying characteristics of road types are studied.The results show that: (1) The average daily travel volume of non-local vehicles in Foshan accounts for 24.11% of the total vehicles in the city, which is similar to the proportion of non-local vehicles (23%) in large provincial capital cities. Among them, the traffic volume of heavy and light vehicles is significantly different inside and outside the “Foshan First Ring Road” (over 50%). (2) Vehicles from other places inside and outside the province are mainly from Guangzhou, Zhaoqing, Guangxi and Zhejiang, and are mainly distributed on the Guangfo connecting channel. The emission standards of non-local trucks and trucks in the province are mainly China IV (38.9%~44.6%), and the fuel type is mainly diesel (78.0%~78.4%). (3) From the point of view of hourly traffic flow, the hourly traffic volume of non-local vehicles inside the “Foshan First Ring Road” is higher than that outside the “Foshan First Ring Road”. In the daytime, the total traffic volume of non-local vehicles, and the traffic volume of non-local vehicles distributed according to different vehice types are both about 3 times that of the night-time. From the perspective of the emission standards of non-local vehicles in the province, the hourly traffic volume of China IV vehicle is the highest; at the same time, non-local vehicles mainly appear on expressways and national and provincial roads.
城市交通出行和技术参数视频卡口外地车辆时空分布
city traffictravel and technical parametersvideo bayonetnon-local vehiclestemporal and spatial distribution
CHENG S, LU F, PENG P. A high-resolution emissions inventory and its spatio-temporal pattern vari-ations for heavy-duty diesel trucks in Beijing,China[J]. Journal of Cleaner Production, 2020,250: 119445.
潘玉瑾, 李媛, 陈军辉, 等. 基于交通流的成都市高分辨率机动车排放清单建立[J]. 环境科学, 2020, 41(8): 3581-3590.
GHAFFARPASAND O, TALAIE M R, AHMADIKIA H, et al. A high-resolution spatial and temporal on-road vehicle emission inventory in an Iranian metropolitan area,Isfahan,based on detailed hourly traffic data[J].Atmospheric Pollution Research, 2020, 11(9) :1598-1609.
GÓMEZ C D, GONZÁLEZ C M, OSSES M,et al. Spatialand temporal disaggregation of the on-road vehicle emission inventory in a medium-sized Andean city.Comparison of GIS-based top-down methodologies [J]. Atmospheric Environment, 2018, 179: 142-155.
严晗. 北京典型道路机动车污染物排放与浓度特征研究[D]. 北京: 清华大学, 2014.
韦清波, 王俊, 莫竣杰, 等. 基于卡口检测的城市机动车出行特征[J]. 交通与运输, 2019, 35(2): 33-36.
江迎. 基于车牌识别技术的长沙市外地车使用特征[C]// 中国城市交通规划年会论文集, 2017: 2566-2573.
龙小强, 苏跃江, 余畅, 等. 基于卡口车牌识别数据的车辆出行分析[J]. 交通运输系统工程与信息, 2019, 19(2): 66-72.
ZHANG Z, LI M, LIN X, et al. Network-wide traffic flow estimation with insufficient volume detection and crowdsourcing data[J]. Transportation Research Part C:Emerging Technologies, 2020, 121(1):102870.
GOKHALE S. Impacts of traffic-flows on vehicular-exhaust emissions at traffic junctions[J].Transportation Research Part D:Transport and Environment, 2012, 17(1): 21-27.
BREUER J L,SAMSUN R C,PETERS R,et al. The impact of diesel vehicles on NOx and PM10 emissions from road transport in urban morphological zones: A case study in North Rhine-Westphalia,Germany[J]. Science of the Total Environment, 2020, 727: 138583.
赵静琦, 姬亚芹, 李越洋, 等. 天津市道路车流量特征分析[J]. 环境科学研究, 2019, 32(3): 399-405.
张帆,程水源,王人洁,等. 京津冀区域国家干线公路机动车大气污染影响研究[J]. 公路交通科技, 2017,34(6): 144-50.
SUN S, JIN J, XIA M, et al. Vehicle emissions in a middle-sized city of China:Current status and future trends[J].Environment International, 2020,137: 105514.
宋晓伟, 郝永佩, 朱晓东. 长三角城市群机动车污染物排放清单建立及特征研究[J]. 环境科学学报, 2020, 40(1) : 90-101.
HUANG Y, MOK W C, YAM Y S, et al. Evaluating in-use vehicle emissions using air quality monitoring stations and on-road remote sensing systems[J]. Science of the Total Environment, 2020, 740: 139868.
周子航,邓也,吴柯颖,等. 成都市道路移动源排放清单与空间分布特征[J]. 环境科学学报, 2018, 38(1): 79-91.
黄成,刘娟,陈长虹,等. 基于实时交通信息的道路机动车动态排放清单模拟研究[J]. 环境科学, 2012,33(11) : 3725-3732.
李笑语,吴琳,邹超,等. 基于实时交通数据的南京市主次干道机动车排放特征分析[J]. 环境科学, 2017, 38(4): 1340-1347.
李丽,刘永红,邓思欣,等. 基于动态交通流的佛山市机动车网格化排放清单[J]. 中山大学学报(自然科学版), 2017, 56(2): 66-75.
唐伟,杨强,黄成,等. 基于大数据分析和IVE模型的杭州市机动车污染物排放变化特征研究[J]. 环境科学学报, 2018, 38(1): 71-78.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构