1.中山大学海洋工程与技术学院,广东 珠海 519082
2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
徐诚湘(1994年生),男;研究方向:物理海洋学;E-mail:xuchx8@mail2.sysu.edu.cn
胡青(1974年生),男;研究方向:声纳总体技术;E-mail:huqing3@mail.sysu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-12,
收稿日期:2021-03-16,
录用日期:2021-05-21
扫 描 看 全 文
徐诚湘,夏飞,许延峰等.小抹香鲸回声定位信号高指向性发声机理[J].中山大学学报(自然科学版),2022,61(03):162-170.
XU Chengxiang,XIA Fei,XU Yanfeng,et al.The high-directivity vocalization mechanism of echolocation signal of the pygmy sperm whale (Kogia breviceps)[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):162-170.
徐诚湘,夏飞,许延峰等.小抹香鲸回声定位信号高指向性发声机理[J].中山大学学报(自然科学版),2022,61(03):162-170. DOI: 10.13471/j.cnki.acta.snus.2021B018.
XU Chengxiang,XIA Fei,XU Yanfeng,et al.The high-directivity vocalization mechanism of echolocation signal of the pygmy sperm whale (Kogia breviceps)[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):162-170. DOI: 10.13471/j.cnki.acta.snus.2021B018.
齿鲸回声定位信号具有高频高指向性特性,使其能够精确感知水中目标,是现代声纳模仿的对象。本文通过分析小抹香鲸
Kogia breviceps
头部的几何结构与组织特性,采用双曲正割折射率材料模拟声速连续变化的额隆,并利用双曲正割折射率材料的最外侧声线轨迹对额隆的轮廓进行建模。在频域与时域两种模式下,应用有限元方法对仿真模型的远场指向性展开了分析,结果表明,点源经过具有双曲正割梯度折射率的额隆后在开口处形成了平面波,即额隆起到了准直的作用。通过对远场声压值分区域相关性分析表明,额隆的准直作用是形成较窄主瓣的主要原因,气囊和头骨则主要起到抑制旁瓣的作用。
The echolocation signal of odontocetes has the characteristics of high-frequency and high-directivity, which enables it to accurately sense underwater targets and is the object imitated by modern sonar. In this paper, by analyzing the geometric structure and tissue characteristics of the head of the pygmy sperm whale (
Kogia breviceps
), the hyperbolic secant refractive index material is used to simulate the melon with continuous changing sound velocity, and the contour of the melon is modeled by the outermost sound track of the hyperbolic secant refractive index material. In frequency domain and time domain, the far-field directivity of the simulation model is analyzed by finite element method. The results show that the plane wave is formed at the opening after the point source passes through the melon with hyperbolic secant gradient refractive index, that is, the melon has the function of collimation. By analyzing the correlation of far-field sound pressure values in different regions, it is shown that the collimation of the melon is the main reason for the formation of the narrower main lobe while the air sacs and the skull mainly play the role of suppressing the side lobe.
小抹香鲸Kogia breviceps高指向性梯度折射率准直作用
pygmy sperm whale (Kogia breviceps)high-directivitygradient indexcollimation
AU W W L. The sonar of dolphins[M]. New York:Springer Science & Business Media, 1993.
方亮.中华白海豚和长江江豚回声定位信号特征研究[D]. 武汉:中国科学院大学,2015.
AU W W L, KASTELEIN R A, RIPPE T, et al. Transmission beam pattern and echolocation signals of a harbor porpoise (Phocoena phocoena)[J].The Journal of the Acoustical Society of America,1999,106(6):3699-3705.
FANG L, LI S, WANG K, et al. Echolocation signals of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in Sanniang Bay, China[J]. The Journal of the Acoustical Society of America, 2015, 138(3): 1346-1352.
KLOEPPER L N, BUCK J R, SMITH A B, et al. Support for the beam focusing hypothesis in the false killer whale[J]. Journal of Experimental Biology, 2015, 218(15): 2455-2462.
WEI C, AU W W L, KETTEN D R, et al. Sound pro-pagation in the near and far-field of a broadband echolocating dolphin and a narrowband echolocating porpoise[C]//Proceedings of Meetings on Acoustics 5ENAL. Acoustical Society of America, 2019, 37(1): 010003.
WEI C, AU W W L, SONG Z, et al. The role of various structures in the head on the formation of the biosonar beam of the baiji (Lipotes vexillifer)[J]. The Journal of the Acoustical Society of America, 2016, 139(2): 875-880.
SONG Z, ZHANG Y, THORNTON S W, et al. The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 2443-2453.
WEI C, SONG Z, AU W W L, et al. A numerical evidence of biosonar beam formation of a neonate Yangtze finless porpoise (Neophocaena asiaeorientalis)[J]. Journal of Theoretical and Computational Acoustics, 2018, 26(2): 1850009.
宋忠长, 张宇, 魏翀, 等. 齿鲸生物声纳发射特性与波束调控研究[J]. 物理学报, 2020, 69(15): 154301-1-154301-12.
SONG Z, XU X, DONG J, et al. Acoustic property reconstruction of a pygmy sperm whale (Kogia breviceps) forehead based on computed tomography imaging[J]. The Journal of the Acoustical Society of America, 2015, 138(5): 3129-3137.
MADSEN P T, LAMMERS M, WISNIEWSKA D, et al. Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: Clicking on the right side and whistling on the left side[J]. Journal of Experimental Biology, 2013, 216(21): 4091-4102.
WEI C, AU W W L, KETTEN D R, et al. Biosonar signal propagation in the harbor porpoise's (Phocoena phocoena) head: The role of various structures in the formation of the vertical beam[J]. The Journal of the Acoustical Society of America, 2017, 141(6): 4179-4187.
LIN S C S, HUANG T J, SUN J H, et al. Gradient-index phononic crystals[J]. Physical Review B, 2009, 79(9): 094302.
GOMEZ-REINO C, PEREZ M V, BAO C. Gradient-index optics: Fundamentals and applications[M]. New York:Springer Science & Business Media, 2002.
程建春. 声学原理[M]. 北京:科学出版社, 2012.
GAO X, ZHANG Y, CAO W, et al. Acoustic beam control in biomimetic projector via velocity gradient[J]. Applied Physics Letters, 2016, 109(1): 013505.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构