1.暨南大学质谱仪器与大气环境研究所/广东省大气污染在线源解析系统工程技术研究中心/ 粤港澳环境质量协同创新联合实验室,广东 广州 510632
2.广东省科学院资源综合利用研究所,广东 广州 510650
3.郑州市环境保护监测中心站,河南 郑州 450007
4.广州禾信仪器股份有限公司,广东 广州 510530
张遥(1996年生),男;研究方向:单颗粒气溶胶质谱技术的开发与应用;E-mail: zhangyao9601@foxmail.com
成春雷(1986年生),男;研究方向:大气化学;E-mail:chengcl@jnu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-14,
收稿日期:2021-03-26,
录用日期:2021-04-29
扫 描 看 全 文
张遥,成春雷,王在华等.基于单颗粒气溶胶质谱仪的气溶胶化学组分的半定量研究[J].中山大学学报(自然科学版),2022,61(03):140-152.
ZHANG Yao,CHENG Chunlei,WANG Zaihua,et al.Research on semi-quantification of aerosol chemical composition using a single particle aerosol mass spectrometer[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):140-152.
张遥,成春雷,王在华等.基于单颗粒气溶胶质谱仪的气溶胶化学组分的半定量研究[J].中山大学学报(自然科学版),2022,61(03):140-152. DOI: 10.13471/j.cnki.acta.snus.2021B017.
ZHANG Yao,CHENG Chunlei,WANG Zaihua,et al.Research on semi-quantification of aerosol chemical composition using a single particle aerosol mass spectrometer[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):140-152. DOI: 10.13471/j.cnki.acta.snus.2021B017.
单颗粒气溶胶质谱仪(SPAMS,single particle aerosol mass spectrometer)可以实时、连续和高时间分辨率的提供单个气溶胶颗粒的粒径和化学组分信息,具有良好的定性能力。但,SPAMS对气溶胶化学组分的定量分析能力尚待评估。采用SPAMS结合滤膜采样的分析方法,于2017-12-01至2018-02-28日在郑州市高新区、航空港区和中原区展开观测,通过对比单颗粒中的元素碳(EC)、有机碳(OC)、硫酸盐、硝酸盐和铵盐的峰面积、数浓度与滤膜采集的质量浓度,以回归分析系数
<math id="M1"><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459791&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459788&type=
4.48733330
2.96333337
评估了SPAMS对5种组分的定量能力。结果表明:EC单颗粒的数浓度和峰面积与其质量浓度的相关性始终很低
<math id="M2"><mo stretchy="false">(</mo><mi>R</mi><mo><</mo><mn mathvariant="normal">0.3</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459795&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459793&type=
12.19200039
2.96333337
,说明尚无法通过相关性分析建立EC单颗粒与质量浓度的定量关系;OC单颗粒与质量浓度的相关性从低度到中度相关分布
<math id="M3"><mo stretchy="false">(</mo><mn mathvariant="normal">0.3</mn><mo><</mo><mi>R</mi><mo><</mo><mn mathvariant="normal">0.5</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459813&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459797&type=
19.89666748
2.96333337
,因此可通过优化OC单颗粒的特征离子选取标准,实现OC的半定量化分析;硫酸盐、硝酸盐和铵盐单颗粒与质量浓度都有中度以上的相关性
<math id="M4"><mo stretchy="false">(</mo><mi>R</mi><mo>></mo><mn mathvariant="normal">0.5</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459799&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459816&type=
12.19200039
2.96333337
,可以通过相关性建立硫酸盐、硝酸盐和铵盐的半定量系数。三个站点各组分相关性对比结果表明:中原区各组分数浓度与质量浓度的相关性高于高新区和航空港区,且中原区测径颗粒数浓度与PM
2.5
质量浓度的相关性也显著高于其他两个采样点,因此测径颗粒数浓度与PM
2.5
质量浓度的相关性可能是评估SPAMS定量化结果好坏的前提条件。
Single particle aerosol mass spectrometer (SPAMS) can provide real-time, continuous and high time resolution data about the size and chemical composition of single particles. The reliable qualitative capability of SPAMS has been widely used to determine the mixing state of atmospheric fine particles. However, the quantitative ability of SPAMS has not been fully evaluated. In this study, the measurement of SPAMS combined with filter sampling was used to conduct the quantitative evaluation of SPAMS in Zhengzhou from December 1, 2017 to February 28, 2018. The peak area and number concentration of elemental carbon (EC), organic carbon (OC), sulfate, nitrate and ammonium containing single particles were compared with the mass concentration measured by the filter membrane, and the regression analysis coefficient
<math id="M5"><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459820&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459819&type=
5.67266655
3.38666677
between them is used to evaluate the quantitative ability of SPAMS for these five components. The results suggest that the number concentration and peak area of EC single particles have no correlation with its mass concentration
<math id="M6"><mo stretchy="false">(</mo><mi>R</mi><mo><</mo><mn mathvariant="normal">0.3</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459826&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459823&type=
14.64733315
3.38666677
in three sampling sites, suggesting that the quantitative analysis of EC through SPAMS was not suitable under the current conditions. The correlation between OC single particles and its mass concentration ranges from low correlation to moderate correlation
<math id="M7"><mo stretchy="false">(</mo><mn mathvariant="normal">0.3</mn><mo><</mo><mi>R</mi><mo><</mo><mn mathvariant="normal">0.5</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459828&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459827&type=
23.70666695
3.38666677
, implying the semi-quantitative analysis of OC can be achieved by optimizing the classification criteria of OC particles. The sulfate‒, nitrate‒, and ammonium‒containing single particles all showed well correlation with their mass concentrations
<math id="M8"><mo stretchy="false">(</mo><mi>R</mi><mo>></mo><mn mathvariant="normal">0.5</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459831&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49459830&type=
14.73200035
3.38666677
, which indicates the semi-quantitative of sulfate, nitrate and ammonium through measurement of SPAMS can be established via the correlation coefficient with their ambient mass concentration. From the correlation results of the three sites, the correlation between the number concentration and the mass concentration of each components in Zhongyuan zone is higher than Gaoxin zone and Airport area, and the correlation between the number concentration and the PM
2.5
mass concentration in Zhongyuan zone is significantly higher than other two sampling sites, so the correlation between the number concentration and the PM
2.5
mass concentration may be a prerequisite for evaluating the quality of SPAMS quantitative results.
SPAMS定量研究元素碳有机碳无机离子
SPAMSquantification researchelemental carbonorganic carboninorganic ions
权建农, 徐祥德, 贾星灿, 等. 影响我国霾天气的多尺度过程[J].科学通报,2020,65(9):810-824.
李占清. 气溶胶对中国天气、气候和环境影响综述[J].大气科学学报,2020,43(1):76-92.
ZHANG G H, HAN B X, BI X H, et al. Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry[J]. Atmospheric Research,2015,153:286-295.
ZHANG G H, BI X H, LOU S R, et al. Source and mixing state of iron-containing particles in Shanghai by individual particle analysis[J]. Chemosphere,2014,95:9-16.
ZHANG G H, BI X H, LI L, et al. Mixing state of individual submicron carbon-containing particles during spring and fall seasons in urban Guangzhou, China: A case study[J]. Atmospheric Chemistry and Physics,2013,13(9):4723-4375.
BI X H, ZHANG G H, LI L, et al. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China[J]. Atmospheric Environment,2011,45(20) :3447-3453.
庄壹, 成春雷, 翁翔, 等. 减排管控期厦门市大气中挥发性有机物浓度变化特征及来源分析[J].分析化学,2019,47(6):890-898.
冯新宇.利用单颗粒气溶胶质谱仪(SPAMS)研究太原市冬季一次雾霾天气的污染特征及成因[J].环境化学,2019,38(1):177-185.
于兴娜, 时政, 马佳, 等. 南京江北新区大气单颗粒来源解析及混合状态[J].环境科学,2019,40(4):1521-1528.
刘琴, 张继科, 黄小娟, 等. 成都春季气溶胶理化性质及不同时段污染特征[J].中国环境科学,2019,39(12):5009-5017.
付怀于, 闫才青, 郑玫, 等. 在线单颗粒气溶胶质谱SPAMS对细颗粒物中主要组分提取方法的研究[J].环境科学,2014,35(11):4070-4077.
ALLEN J O, BHAVE P V, WHITEAKER J R, et al. Instrument busy time and mass measurement using aerosol time-of-flight mass spectrometry[J]. Aerosol Science and Technology,2006,40(8):615-626.
FERGENSON D P, SONG X H, RAMADAN Z, et al. Quantification of ATOFMS data by multivariate methods[J]. Analytical Chemistry,2001,73(15):3535-3541.
GROSS D S, GÄLLI M E, SILVA P J, et al. Relative sensitivity factors for alkali metal and ammonium cations in single-particle aerosol time-of-flight mass spectra[J]. Analytical Chemistry,2000,72(2) :416-422.
BHAVE P V, KLEEMAN M J, ALLEN J O, et al. Evaluation of an air quality model for the size and composition of source-oriented particle classes[J]. Environmental Science & Technology,2002,36(10) :2154-2163.
QIN X Y, BHAVE P V, PRATHER K A. Comparison of two methods for obtaining quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements[J]. Analytical Chemistry,2006,78(17): 6169-6178.
SPENCER M T , PRATHER K A . Using ATOFMS to determine OC/EC mass fractions in particles[J]. Aerosol Science & Technology, 2006,40(8):585-594.
JEONG C-H, MCGUIRE M L, GODRI K J,et al. Quantification of aerosol chemical composition using continuous single particle measurements[J]. Atmospheric Chemistry and Physics,2011,11(236) :7027-7044.
HEALY R M, SCIARE J, POULAIN L, et al. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements[J].Atmospheric Chemistry and Physics,2013,13(18):9479-9496.
ZHOU Y, HUANG X H, GRIFFITH S M, et al. A field measurement based scaling approach for quantification of major ions, organic carbon, and elemental carbon using a single particle aerosol mass spectrometer[J]. Atmospheric Environment,2016,143:300-312.
GEMAYEL R, TEMIME-ROUSSEL B, HAYECK N, et al. Development of an analytical methodology for obtaining quantitative mass concentrations from LAAP-ToF-MS measurements[J]. Talanta,2017,174:715-724.
SHEN X, SAATHOFF H, HUANG W, et al. Understanding atmospheric aerosol particles with improved particle identification and quantification by single-particle mass spectrometry[J].Atmospheric Measurement Techniques,2019,12(4):2219-2240.
刘玺, 孔少飞, 郑淑睿, 等. 春节前后华北平原农村地区浓度及来源[J].中国环境科学,2019,39(8):3169-3177.
XU Z N, HUANG X, NIE W, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China[J]. Atmospheric Environment,2017,168:112-124.
王新辉, 苏林, 陶明辉, 等. 基于星地同步观测的华北平原中部背景地区冬季霾污染过程[J].中国环境科学,2016,36(6):1610-1620.
王维思, 王楠, 高玉娟, 等. 2019年郑州冬、春季重污染期间PM2.5污染特征分析[J].环境科学学报,2020,40(5):1594-1603.
郭蒙蒙, 姜楠, 王申博, 等. 郑州市2014-2017年大气污染特征及气象条件影响分析[J].环境科学,2019,40(9):3856-3867.
TAO M H, CHEN L F, SU L, et al. Satellite observation of regional haze pollution over the North China Plain[J]. Journal of Geophysical Research: Atmospheres,2012,117:D12.
LI L, HUANG Z X, DONG J G, et al. Real time bipolar time-of-flight mass spectrometer for analyzing single aerosol particles[J]. International Journal of Mass Spectrometry,2011,303(2):118-124.
DALL'OSTO M, BEDDOWS D C S, KINNERSLEY R P, et al. Characterization of individual airborne particles by using aerosol time‐of‐flight mass spectrometry at Mace Head, Ireland[J].Journal of Geophysical Research: Atmospheres, 2004,109:D21.
CHEN K, YIN Y, KONG S F, et al. Size-resolved chemical composition of atmospheric particles during a straw burning period at Mt. Huang (the Yellow Mountain) of China[J].Atmospheric Environment,2014,84:380-389.
DALL'OSTO M, HARRISON R, BEDDOWS D, et al.Single-particle detection efficiencies of aerosol time-of-flight mass spectrometry during the North Atlantic marine boundary layer experiment[J]. Environmental Science & Technology,2006,40(16):5029-5035.
ZAUSCHER M D, WANG Y, MOORE M, et al. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires[J]. Environmental Science & Technology,2013,47(14):7633-7643.
MASSOLI P, ONASCH T B, CAPPA C D, et al. Characterization of black carbon‐containing particles from soot particle aerosol mass spectrometer measurements on the R/V Atlantis during CalNex 2010[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(6): 2575-2593.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构