中山大学材料科学与工程学院,广东 广州 510275
姚眉捷(1997年生),男;研究方向:分子模拟;E-mail: yaomj6@mail2.sysu.edu.cn
刘书乐(1985年生),男;研究方向:计算材料学;E-mail: liushle@mail.sysu.edu.cn
纸质出版日期:2022-03-25,
收稿日期:2021-02-18,
录用日期:2021-03-18
扫 描 看 全 文
姚眉捷,王永朋,梁斐等.乙腈在石墨烯极板表面的分子动力学模拟[J].中山大学学报(自然科学版),2022,61(02):82-89.
YAO Meijie,WANG Yongpeng,LIANG Fei,et al.Molecular dynamics simulation of acetonitrile at graphene electrode surface[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):82-89.
姚眉捷,王永朋,梁斐等.乙腈在石墨烯极板表面的分子动力学模拟[J].中山大学学报(自然科学版),2022,61(02):82-89. DOI: 10.13471/j.cnki.acta.snus.2021B005.
YAO Meijie,WANG Yongpeng,LIANG Fei,et al.Molecular dynamics simulation of acetonitrile at graphene electrode surface[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):82-89. DOI: 10.13471/j.cnki.acta.snus.2021B005.
采用分子动力学模拟的方法,研究了乙腈在超级电容器石墨烯极板表面的结构和动力学性质。通过密度分布、取向分布和扩散系数的计算,分析了团簇修饰以及极板电荷对乙腈结构和动力学性质的影响。模拟显示:团簇的修饰会产生强烈的空间位阻效应,使界面上乙腈的吸附和扩散都减弱,而带电极板则会对乙腈的取向产生明显改变,进而影响乙腈的输运性质。研究结果揭示了乙腈与石墨烯极板相互作用的微观机理,有助于理解服役工况下超级电容器极板附近溶剂的分布。
Molecular dynamics (MD) simulations were performed to study the interfacial structure and dynamics of acetonitrile (ACN) on the graphene electrode surface in supercapacitors. The influence of cluster modification and charge densities on the structure and dynamics of ACN have been analyzed through density distribution, orientation distribution and diffusion analysis. Simulation results indicate that electrode modification with clusters will induce strong steric hindrance that impedes the adsorption and diffusion of ACN, while charges on the electrode will give rise to reorientation of ACN molecules that further affect their transport. Our simulations have revealed the microscopic mechanism of ACN-electrode interactions and would be helpful for understanding the distribution of solvent in supercapacitors under working conditions.
石墨烯乙腈超级电容器分子动力学
grapheneacetonitrilesupercapacitorsmolecular dynamics
唐东东,吴尚,彭坤楠,等. 超级电容器及其电极材料的研究进展 [J]. 山东化工, 2021, 50(1): 88-89.
宋慧敏,李雅菲,韩继源,等. 石墨烯/导电聚合物复合材料研究进展 [J]. 胶体与聚合物, 2020, 38(4): 195-199+204.
韩亚伟,姜挥,付强,等. 超级电容器国内外应用现状研究 [J]. 上海节能, 2021, 23(1): 43-52.
DU X, GUO P, SONG H, et al. Graphene nanosheets as electrode material for electric double-layer capacitors [J]. Electrochim Acta, 2010, 55(16): 4812-4819.
ZHAI Y, DOU Y, ZHAO D, et al. ChemInform abstract: carbon materials for chemical capacitive energy storage [J]. Advanced Materials, 2012, 23(42): 4828-4850.
NASIMI M, AKBARZADEH H, ABBASPOUR M, et al. Investigation of different effects on the capacity of supercapacitor comprising an ionic liquid between graphene oxide nanosheets [J]. Journal of Molecular Liquids, 2018, 266(3): 658-672.
MEYER J C, GEIM A K, KATSNELSON M I, et al. Structure of suspended graphene sheets [J]. Nature, 2007, 446(7131): 60-63.
HAYES R, WARR G G, ATKIN R. Structure and nanostructure in ionic liquids [J]. Chemical Reviews, 2015, 115(13): 6357-6426.
LIBICH J, MÁCA J, VONDRÁK J, et al. Supercapacitors: properties and applications [J]. Journal of Energy Storage, 2018, 17(23): 224-227.
WANG Y, SONG Y, XIA Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications [J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
SALANNE M. Ionic liquids for supercapacitor applications [J]. Ionic Liquids II, 2017,375(63): 29-53.
ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
RAZMKHAH M. Effects of carboxylic group on bulk and electrical double layer properties of amino acid ionic liquid [J]. Journal of Molecular Liquids, 2020, 299(1): 112158-112159.
PAULISTA N A J, FILETI E E. Differential capacitance and energetics of the electrical double layer of graphene oxide supercapacitors: impact of the oxidation degree [J]. Journal of Physical Chemistry C, 2018, 122(38): 21824-21832.
ZHAN C, ZHANG Y, CUMMINGS P T, et al. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration [J]. Physical Chemistry Chemical Physics, 2016, 18(6): 4668-4674.
SAMPAIO A M, FILETI E E, SIQUEIRA L J A. Atomistic study of the physical properties of sulfonium-based ionic liquids as electrolyte for supercapacitors [J]. Journal of Molecular Liquids, 2019, 296(2): 112065-112066.
JO S, PARK S-W, SHIM Y, et al. Effects of Alkyl chain length on interfacial structure and differential capacitance in graphene supercapacitors: a molecular dynamics simulation study [J]. Electrochim Acta, 2017, 247(1): 634-645.
HU Z, WEEKS J D. Acetonitrile on silica surfaces and at its liquid-vapor interface: structural correlations and collective dynamics [J]. Journal of Physical Chemistry C, 2010, 114(22): 10202-10211.
SERGEY M M,ALEXANDRA H,ANDREAS S-M, et al. A molecular dynamics study on the partitioning mechanism in hydrophilic interaction chromatography [J]. Angewandte Chemie International Edition, 2012, 51(25): 6251-6254.
CUNNINGHAM G P, VIDULICH G A, KAY R L. Several properties of acetonitrile-water, acetonitrile-methanol, and ethylene carbonate-water systems[J].Journal of Chemical and Engineering Data, 1967, 12(3): 336-337.
CHABAN V V, VOROSHYLOVA I V, KALUGIN O N, et al. Acetonitrile boosts conductivity of imidazolium ionic liquids [J]. Journal of Physical Chemistry B, 2012, 116(26): 7719-7727.
FROLOV A I, KIRCHNER K, KIRCHNER T, et al. Molecular-scale insights into the mechanisms of ionic liquids interactions with carbon nanotubes [J]. Faraday Discuss, 2011, 154(22): 235-247.
WANG Y P, REN K, LIU S. The joint effect of surface polarity and concentration on the structure and dynamics of acetonitrile solution: a molecular dynamics simulation study [J]. Physical Chemistry Chemical Physics, 2020, 22(18): 10322-10334.
KARNES J J, GOBROGGE E A, WALKER R A, et al. Unusual structure and dynamics at Silica/Methanol and Silica/Ethanol interfaces—a molecular dynamics and nonlinear optical study [J]. Journal of Physical Chemistry B, 2016, 120(8): 1569-1578.
LIAN C , LIU K, LIU H L,et al. Impurity effects on charging mechanism and energy storage of nanoporous supercapacitors [J]. Journal of Physical Chemistry C, 2017, 121(26): 14066-14072.
MERLET C, ROTENBERG B, MADDEN P A, et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes [J]. Nature Materials, 2012, 11(4): 306-310.
NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81(1): 511-519.
HOOVER W G. Canonical dynamics: equilibrium phase-space distributions [J]. Physical Review A: General Physics, 1985, 31(3): 1695-1697.
NIKITIN A M, LYUBARTSEV A P. New six-site acetonitrile model for simulations of liquid acetonitrile and its aqueous mixtures [J]. Journal of Computational Chemistry, 2010, 28(12): 2020-2026.
CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules [J]. Journal of the American Chemical Society, 1995, 117(19): 5179-5197.
DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald: an N⋅log(N) method for ewald sums in large systems [J].The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
YEH I C, BERKOWITZ M L. Ewald summation for systems with slab geometry [J]. The Journal of Chemical Physics, 1999, 111(7): 3155-3162.
HOCKNEY R W, EASTWOOD J W. Computer simulation using particles [M]. Taylor & Francis, 1989.
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. The Journal of Chemical Physics, 1995, 117(1): 1-19.
HU Z H, JOHN D W. Acetonitrile on silica surfaces and at its liquid-vapor interface: structural correlations and collective dynamics [J]. Journal of Physical Chemistry C, 2010, 114(22): 10202-10211.
HANSEN Y V, GEKLE S, NETZ R R. Anomalous anisotropic diffusion dynamics of hydration water at lipid membranes [J]. Physical Review Letters, 2013, 111(11): 118103-118104.
LIU P, HARDER E, BERNE B J. On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid-vapor interface of water [J]. Journal of Physical Chemistry B, 2004, 108(21): 6595-6602.
ROMERO-VARGAS C S S, GIOVAMBATTISTA N, AKSAY I A, et al. Effect of surface polarity on the structure and dynamics of water in nanoscale confinement [J]. Journal of Physical Chemistry B, 2009, 113(5): 1438-1146.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构