1.广东第二师范学院计算机学院,广东 广州 510303
2.香港浸会大学许士芬博士体康研究中心,香港 999077
3.中山大学计算机学院,广东 广州 510275
滕毅(1986年生),女;研究方向:服装热湿模型及热功能性仿真工程应用;E-mail:tengyi@gdei.edu.cn
王若梅(1961年生),女;研究方向:人体热湿仿真、运动健康监测;E-mail:isswrm@mail.sysu.edu.cn
纸质出版日期:2023-07-25,
扫 描 看 全 文
滕毅,焦姣,马焯文等.运动着装人体热生理仿真系统设计[J].中山大学学报(自然科学版),2023,62(04):147-157.
TENG Yi,JIAO Jiao,MA Zhuowen,et al.A thermal performance predicting CAD system of clothed human during exercise[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):147-157.
滕毅,焦姣,马焯文等.运动着装人体热生理仿真系统设计[J].中山大学学报(自然科学版),2023,62(04):147-157. DOI: 10.13471/j.cnki.acta.snus.2021A095.
TENG Yi,JIAO Jiao,MA Zhuowen,et al.A thermal performance predicting CAD system of clothed human during exercise[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):147-157. DOI: 10.13471/j.cnki.acta.snus.2021A095.
有效量化运动中着装人体的热生理状态,并提前预测着装的热舒适性,对于健康监测、分析和预防事故具有重要意义. 本文从“运动”特征出发,定义服装通风因子量化通风效应,再将服装通风效应与着装人体的热生理模型结合,构建考虑服装通风效应的运动着装人体热生理数学模型. 本文以该模型为基础,综合考虑行业应用的便捷性和复杂数学模型的多个参数的可计算性,提出着装人体热生理仿真系统框架,设计并实现了运动着装人体的热生理仿真系统,预测运动过程中人体着装时的不同生理状态,规避可能出现温度失衡的风险.
Effectively quantifying the thermal performance of the clothed human body during exercise and to predict the thermal performance when wearing clothing in advance, are of great significance for health monitoring and analysis, and accident prevention. In this study, a mathematical model of a clothed human during exercise is selected to predict the thermal performance by considering the quantified effects of clothing pumping effect in the human-clothing-environment boundary model. With comprehensive consideration of the convenience of industry applications and the computability of the complex mathematical model, simulation framework is proposed, according to which, a CAD system of the clothed-human’s thermophysiology is developed. The CAD system can predict the thermophysiological responses of the human body in advance when wearing different kinds of clothing and consequently prevent occurring of thermal-related accident during exercise. It can be implemented to the development of thermal-functional clothing, and have the advantage of saving time, manpower and other unnecessary cost as compared with the traditional clothing development process.
服装通风效应运动着装人体热生理仿真仿真系统
clothing pumping effectclothed humanthermal performance simulationCAD system
陈毅能, 路璐, 胡伟平, 等, 2015. PhysiolComp Toolkit: 一个生理计算交互工具箱的分析与设计[J]. 计算机学报, 38(12): 2464-2476.
冯敏, 冯辉, 张一雨, 等, 2019. 随机森林模型分析大学生体质健康影响因素: 来源于同济大学568名学生的问卷调查[J]. 中国组织工程研究, 23(23): 3722-3728.
贾楠, 贾晓敏, 郝晶晶, 等, 2020. 基于多元热生理仿真的运动健康量化方法及系统实现[J]. 太原理工大学学报, 51(3): 451-461.
鲁亚磊, 王瑞, 邢奕鹏, 等, 2018. 人体运动数据的实时采集及可靠传输系统设计[J]. 电子测量技术, 41(6): 109-114.
曲鑫璐, 邓辉, 师云龙, 等, 2020. 着装人体局部热舒适性研究与发展现状[J]. 丝绸, 57(12): 55-62.
孙滢, 2019. 基于微型建筑的服装热阻对人体热舒适的影响研究[D]. 扬州: 扬州大学.
陶佳, 2021. 有氧运动联合科学营养指导对老年心衰患者疗效和患者运动情况及负性情绪的影响[J]. 当代医学, 27(18): 40-42.
滕毅, 王若梅, 焦娇,2021. 一种运动着装人体热生理仿真方法: CN202111549156.1[P]. 2021-12-17.
滕毅, 郑怡, 王若梅,等,2022. 《高性能服装CAD设计》教学模式探索[J/OL]. 科教导刊(电子版),(9): 150-152.
王秀荣, 2018. 普通高校体育运动风险防控的理论与实践[J]. 黑河学院学报, 9(2): 112-113.
王正珍, 2020. 规律运动提升免疫力优化慢性病管理[J]. 中华健康管理学杂志, 14(3): 221-225.
吴静, 2020. 高强度运动对大学生体质健康水平的影响[J]. 体育风尚, (2): 11-12.
苑秀明, 2012. 浅析蒙古袍结构的“烟囱效应”[J]. 天津纺织科技, (2): 37-38+41.
张崇林, 王世香, 王卉, 等, 2020. 基于关联规则数据挖掘的大学生体育锻炼行为阶段体质健康知识发现[J]. 井冈山大学学报(自然科学版), 41(3): 80-84.
张宪文, 黄锦康, 伍智琴, 等, 2020. 基于Android系统的一款运动健康类APP的设计[J]. 电子测试, (11): 79-81.
赵蒙蒙, 柯莹, 王发明, 等, 2019. 通风服热舒适性研究现状与展望[J]. 纺织学报, 40(3): 183-188.
朱光, 2009. 消防员着装系统的构成及其热湿舒适性研究[D]. 上海: 东华大学.
ANGELOVA R A, 2015. Numerical simulation of the thermoregulation of clothed human body: Skin and clothing temperatures[J]. J Braz Soc Mech Sci Eng, 37(1): 297-303.
AWAIS M, KRZYWINSKI S, WENDT E, 2018. Thermal simulation of human body-clothing-environment system[C]//12th International Manikin and Modelling Meeting, St. Gallen, Switzerland.
FANGER P O, 1970. Thermal comfort: Analysis and applications in environmental engineering[M]. Copenhagen: Danish Technical Press.
HOLOPAINEN R, 2012. A Human thermal model for improved thermal comfort[D]. Helsinki: Aalto University.
JIA N, HUANG Y, LI J, et al, 2019. Parallel simulation model for heat and moisture transfer of clothed human body[J]. J Supercomput, 75(8): 4731-4749.
LEE T G, LEE S H, 2016. Dynamic bio-sensing process design in mobile wellness information system for smart healthcare[J]. Wirel Pers Commun Int J, 86(1): 201–215.
LI Q, CLIFFORD G D, 2012. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals[J]. Physiol Meas, 33(9): 1491-1501.
MAO A, LUO J, LI G, et al, 2016. Numerical simulation of multiscale heat and moisture transfer in the thermal smart clothing system[J]. Appl Math Model, 40(4): 3342-3364.
MAO A, LUO J, LI Y, et al, 2011. A multi-disciplinary strategy for computer-aided clothing thermal engineering design[J]. Comput Aided Des, 43(12): 1854-1869.
MAO A, LUO J, LI Y, 2017. Numerical simulation of thermal behaviors of a clothed human body with evaluation of indoor solar radiation[J]. Appl Therm Eng, 117: 629-643.
STOLWIJK J A J,HARDY J D,1966. Temperature regulation in man:A theoretical study[J]. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 291: 29-162.
TENG Y, JIAO J, WANG R, et al, 2022. Computational model of predicting thermal performance of a clothed human by considering the clothing pumping effect[J]. J Therm Sci Eng Appl, 14(1): 014501.
WANG Z, LI Y, ZHU Q Y, et al, 2003. Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials[J]. J Appl Polym Sci, 89(10): 2780-2790.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构