1.四川化工职业技术学院基础教学部,四川 泸州 646099
2.西北师范大学数学与统计学院,甘肃 兰州 730070
苏洁(1996年生),女;研究方向:无穷维动力系统;E-mail:1918035424@qq.com
汪璇(1973年生),女;研究方向:非线性微分方程和无穷维动力系统;E-mail:wangxuan@nwnu.edu.cn
纸质出版日期:2023-07-25,
收稿日期:2021-05-17,
录用日期:2022-07-10
扫 描 看 全 文
苏洁,汪璇.带有非局部强阻尼的Kirchhoff型波方程的时间依赖全局吸引子[J].中山大学学报(自然科学版),2023,62(04):165-177.
SU Jie,WANG Xuan.The time-dependent global attractors for Kirchhoff-type wave equation with strong nonlocal damping[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):165-177.
苏洁,汪璇.带有非局部强阻尼的Kirchhoff型波方程的时间依赖全局吸引子[J].中山大学学报(自然科学版),2023,62(04):165-177. DOI: 10.13471/j.cnki.acta.snus.2021A039.
SU Jie,WANG Xuan.The time-dependent global attractors for Kirchhoff-type wave equation with strong nonlocal damping[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):165-177. DOI: 10.13471/j.cnki.acta.snus.2021A039.
对于带有非局部强阻尼和非线性扰动的
<math id="M2"><mi mathvariant="normal">K</mi><mi mathvariant="normal">i</mi><mi mathvariant="normal">r</mi><mi mathvariant="normal">c</mi><mi mathvariant="normal">h</mi><mi mathvariant="normal">h</mi><mi mathvariant="normal">o</mi><mi mathvariant="normal">f</mi><mi mathvariant="normal">f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49417881&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49417896&type=
11.93799973
2.28600001
型波方程,研究了其在时间依赖空间中解的长时间行为.运用收缩函数的方法验证了过程的渐近紧性,得到了时间依赖全局吸引子的存在性.
The long-time behavior of solutions in the time-dependent functional space for the Kirchhoff-type wave equation with strong nonlocal damping and nonlinear perturbations are concerned. The existence of time-dependent global attractor is achieved by using the contraction function method to verify the asymptotic compactness of the process.
非局部强阻尼Kirchhoff型波方程收缩函数时间依赖全局吸引子
strong nonlocal dampingKirchhoff-type wave equationcontraction functiontime-dependent attractor
胡弟弟, 汪璇, 2018. 记忆型抽象发展方程时间依赖吸引子的存在性[J]. 华东师范大学学报(自然科学版), (1): 35-49.
刘亭亭, 马巧珍, 2016. Plate方程时间依赖全局吸引子的存在性[J]. 华东师范大学学报(自然科学版), (2): 35-44.
汪璇, 胡弟弟, 2017. 记忆型无阻尼抽象发展方程的时间依赖全局吸引子[J]. 吉林大学学报(理学版), 55(4): 828-838
汪璇, 韩英, 胡弟弟, 2018. 记忆型抽象发展方程的时间依赖全局吸引子[J]. 吉林大学学报(理学版), 56(4): 769-778.
汪璇, 梁兰兰, 宋安, 2020. 带有非线性阻尼的抽象发展方程的时间依赖吸引子[J]. 西北师范大学学报(自然科学版), 56(1): 1-9.
汪璇,苏洁,2021. Kirchhoff型波方程的时间依赖全局吸引子[J]. 云南大学学报(自然科学版),43(4): 635-645.
CHUESHOV I, 2012. Long-time dynamics of Kirchhoff wave models with strong nonlinear damping[J]. J Differ Equ, 252(2): 1229-1262.
CONTI M, PATA V, 2014. Asymptotic structure of the attractor for processes on time-dependent spaces[J]. Nonlinear Anal Real World Appl, 19: 1-10.
CONTI M, PATA V, TEMAM R, 2013. Attractors for processes on time-dependent spaces. Applications to wave equations[J]. J Differ Equ, 255(6): 1254-1277.
MENG F, YANG M, ZHONG C, 2016. Attractors for wave equations with nonlinear damping on time-dependent space[J]. Discrete Continuous Dyn Syst Ser B, 21(1): 205-225.
SUN C, CAO D, DUAN J, 2006. Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J]. Nonlinearity, 19(11): 2645-2665.
YANG L, ZHONG C K, 2008. Global attractor for plate equation with nonlinear damping[J]. Nonlinear Anal, 69(11): 3802-3810.
YANG Z, DA F, 2019. Stability of attractors for the Kirchhoff wave equation with strong damping and critical nonlinearities[J]. J Math Anal Appl, 469(1): 298-320.
YANG Z, DING P, LIU Z, 2014. Global attractor for the Kirchhoff type equations with strong nonlinear damping and supercritical nonlinearity[J]. Appl Math Lett, 33: 12-17.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构