吉林师范大学数学与计算机学院,吉林 四平 136000
孟鑫(1980年生),男;研究方向:微分方程与动力系统;E-mail:xinmeng@jlnu.edu.cn
纸质出版日期:2023-03-25,
网络出版日期:2022-12-30,
收稿日期:2021-04-23,
录用日期:2021-09-13
扫 描 看 全 文
孟鑫.一类非线性分数阶q-差分方程耦合系统边值问题解的存在性[J].中山大学学报(自然科学版),2023,62(02):165-171.
MENG Xin.Existence of solutions for boundary value problem for a class of coupled system of nonlinear fractional q-difference equations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):165-171.
孟鑫.一类非线性分数阶q-差分方程耦合系统边值问题解的存在性[J].中山大学学报(自然科学版),2023,62(02):165-171. DOI: 10.13471/j.cnki.acta.snus.2021A022.
MENG Xin.Existence of solutions for boundary value problem for a class of coupled system of nonlinear fractional q-difference equations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(02):165-171. DOI: 10.13471/j.cnki.acta.snus.2021A022.
考虑了一类非线性Caputo型分数阶
q
-差分方程耦合系统边值问题。应用Leray-Schauder非线性抉择和Altman不动点定理证明该耦合系统边值问题解的存在性。最后通过例子说明了主要结论在实际问题中应用。
The boundary value problem for a class of coupled system of nonlinear Caputo fractional
q
-difference equations is considered. The existence of solutions for the coupled system is obtained by using the Leray-Schauder nonlinear alternative and the Altman fixed point theorem. As applications, some examples are presented to illustrate the main results.
分数阶q-差分方程耦合系统边值问题Leray-Schauder非线性抉择
fractional q-difference equationcoupled systemvalue problemsLeray-Schauder nonlinear alternative
ABDELJAWAD T, ALZABUT J, 2018. On Riemann-Liouville fractional q-difference equations and their application to retarded logistic type model[J]. Math Methods Appl Sci, 41(18): 8953-8962.
ABDELJAWAD T, ALZABUT J, BALEANU D, 2016. A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems[J]. J Inequal Appl,(1): 240.
ABDELJAWAD T, BALEANU D, 2011. Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function[J]. Commun Nonlinear Sci Numer Simul, 16(12): 4682-4688.
ADAMS C R, 1928. On the linear ordinary q-difference equation[J]. Ann Math, 30(1/2/3/4): 195-205.
AGARWAL R P, GRACE S R, O'REGAN D, 2003. Nonoscillatory solutions for discrete equations[J]. Comput Math Appl, 45(6/7/8/9): 1297-1302.
AHMAD B, 2011. Boundary-value problems for nonlinear third-order q-difference equations[J/OL]. Electron J Differential Equations, 94.
AHMAD B, NTOUYAS S K, PURNARAS I K, 2012. Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations[J]. Adv Difference Equ: 140.
CARMICHAEL R D, 1912. The general theory of linear q-difference equations[J]. Amer J Math, 34(2): 147-168.
EL-SHAHED M, HASSAN H A, 2010. Positive solutions of q-difference equation[J]. Proc Amer Math Soc, 138(5): 1733-1738.
KAC V, CHEUNG P, 2002. Quantum calculus[M]. New York: Springer-Verlag.
LIANG S, ZHANG J, 2012. Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences[J]. J Appl Math Comput, 40(1): 277-288.
SMART D R, 1974. Fixed point theorems[M]. Cambridge: Cambridge University Press.
YANG W, 2013. Positive solutions for boundary value problems involving nonlinear fractional q-difference equations[J]. Differ Equ Appl, 5(2): 205-219.
ZHAO Y, CHEN H, ZHANG Q, 2013a. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions[J]. Adv Difference Equ:48.
ZHAO Y, CHEN H, ZHANG Q, 2013b. Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivatives[J]. Bound Value Probl: 103.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构