1.广东药科大学医药信息工程学院, 广东 广州 510006
2.广西民族大学数学与物理学院, 广西 南宁 530006
3.广东技术师范大学数学与系统科学学院, 广东 广州 510665
孟盼(1981年生),女;研究方向:神经动力学;E-mail:mengpan@gdpu.edu.cn
董健卫(1979年生),男;研究方向:数学模型、脑功能磁共振成像;E-mail:dongjw@gdpu.edu.cn
纸质出版日期:2023-07-25,
网络出版日期:2023-06-12,
收稿日期:2021-03-25,
录用日期:2022-01-12
扫 描 看 全 文
孟盼,季全宝,陈艳美等.双频激励下的两房室神经元模型的动力学分析[J].中山大学学报(自然科学版),2023,62(04):158-164.
MENG Pan,JI Quanbao,CHEN Yanmei,et al.Dynamical analysis in a two-compartment model with multiple-periodic excitations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):158-164.
孟盼,季全宝,陈艳美等.双频激励下的两房室神经元模型的动力学分析[J].中山大学学报(自然科学版),2023,62(04):158-164. DOI: 10.13471/j.cnki.acta.snus.2021A020.
MENG Pan,JI Quanbao,CHEN Yanmei,et al.Dynamical analysis in a two-compartment model with multiple-periodic excitations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(04):158-164. DOI: 10.13471/j.cnki.acta.snus.2021A020.
以双频激励下的两房室神经元模型为例,研究了多频激励下的不同激励频率对快慢耦合系统的复杂动力学行为及其产生机制的影响. 以一个慢变量表达式建模多个外激励项,将系统转化为耦合的快慢混合系统,从快慢分析的传统观点探索分岔模式及相应分岔行为与慢变参数之间的关系. 结果表明当两个激励频率均远小于系统的固有频率时,系统可以产生混合簇振荡行为. 本文的结果说明不同的周期激励对系统的分岔结构有着重要影响,快子系统在不同激励频率取值下能够产生多个平衡态和多种分岔共存的现象,从而使得系统存在着混合簇振荡行为.
By taking the controlled two-compartment model with two slow excitation frequencies as an example, the influence of different frequency on the dynamics as well as the generation mechanism of the various complex behaviors is investigated. A slow variable expression is used to model multiple external excitation terms, and the system is transformed into a coupled fast and slow hybrid system. From the traditional point of view of fast and slow analysis, the relationship between bifurcation mode and corresponding bifurcation behavior and slow variable parameters is explored. It is found that the system can generate multi-mode bursting oscillations if there exists an order gap between the exciting frequency and the natural one. Our results show that different frequencies have great influence on the bifurcation structure of the system. It is indicated that both of the multi-equilibria states and various bifurcation behaviors are coexisted in the equilibrium curves, thus further multi-mode bursting oscillations can be observed in the controlled system with different stimulus values .
两房室神经元模型不同激励频率簇模式快慢动力学分析分岔
two-compartment modeldifferent exciting frequenciesburstingfast-slow analysisbifurcation
孟盼,黄榕波,董健卫, 2016. 两房室锥体神经元模型的分岔分析[J].广东药学院学报,32(5): 654-657.
孟盼,陆启韶,赵勇,等, 2016. 两房室神经元模型的同步簇放电的动力学分析[J]. 动力学与控制, 14(6): 566-571.
孟盼,陈艳美,董健卫, 2020. 周期激励下的前包钦格呼吸神经元的簇振荡现象研究[J]. 数学的实践与认识, 50(8): 149-157.
汪云九, 2006. 神经信息学—神经系统的理论和建模[M]. 北京: 高等教育出版社.
王青云, 石霞, 陆启韶, 2008. 神经元耦合系统的同步动力学[M]. 北京: 科学出版社.
严冬梅, 2019. 周期激励下一类耦合Duffing系统快慢动力学行为研究[D]. 金华: 浙江师范大学.
张晓芳,吴磊,毕勤胜, 2017. 不同激励频率比下复合模态振荡的结构特性分析[J]. 中国科学: 技术科学, 47(6): 666-674.
BI Q S, ZHANG R, ZHANG Z D, 2014. Bifurcation mechanism of bursting oscillations in parametrically excited dynamical system[J]. Appl Math Comput, 243(1): 482-491.
HAN X J, BI Q S, 2011. Bursting oscillations in Duffing's equation with slowly changing external forcing[J]. Commun Nonlinear Sci Numer Simul, 16(8): 4146-4152.
HAN X J, BI Q S, JI P, et al, 2015. Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies[J]. Phys Rev E, 92: 012911.
HAN X J, LIU Y, BI Q S,et al, 2019. Frequency-truncation fast-slow analysis for parametrically and externally excited systems with two slow incommensurate excitation frequencies[J]. Commun Nonlinear Sci Numer Simul, 72: 16-25.
HAN X J, XIA F B, ZHANG C,et al, 2017. Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations[J]. Nonlinear Dynam, 88(4): 2693-2703.
IZHIKEVICH E, 2000. Neural excitability, spiking, and bursting [J]. Int J Bifurcat Chaos, 10(6): 1171-1266.
LISMAN J E, 1997. Bursts as a unit of neural information: Making unreliable synapses reliable[J]. Trends Neurosci, 20(1): 38-43.
MENG P, JI Q B, DONG J W, 2019. Bursting analysis for the pre-Bötzinger complex with periodic forcing[J]. AIP Adv, 9: 065010.
RINZEL J, 1985. Ordinary and partial differential equations[M]. Berlin: Springer-Verlag.
WEI M K, JIANG W A, MA X D,et al, 2021. Compound bursting dynamics in a parametrically and externally excited mechanical system [J]. Chaos, Solitons Fractals,143: 110605.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构