重庆师范大学数学科学学院, 重庆401331
郑秋燕(1996年生),女;研究方向:偏微分方程反问题;E-mail:1326189168@qq.com
刘立汉(1987年生),男;研究方向:偏微分方程反问题;E-mail:mathsedu2013@163.com
纸质出版日期:2022-05-25,
网络出版日期:2022-03-24,
收稿日期:2021-02-01,
录用日期:2021-04-03
扫 描 看 全 文
郑秋燕,刘立汉,陈容.基于边界积分方程方法的可穿透非均匀介质反散射中的传输特征值问题[J].中山大学学报(自然科学版),2022,61(03):181-188.
ZHENG Qiuyan,LIU Lihan,CHEN Rong.A boundary integral equation method for transmission eigenvalue problems in penetrable inhomogeneous media[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):181-188.
郑秋燕,刘立汉,陈容.基于边界积分方程方法的可穿透非均匀介质反散射中的传输特征值问题[J].中山大学学报(自然科学版),2022,61(03):181-188. DOI: 10.13471/j.cnki.acta.snus.2021A009.
ZHENG Qiuyan,LIU Lihan,CHEN Rong.A boundary integral equation method for transmission eigenvalue problems in penetrable inhomogeneous media[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):181-188. DOI: 10.13471/j.cnki.acta.snus.2021A009.
利用边界积分方程方法研究了可穿透非均匀介质反散射中的传输特征值问题。首先,根据可穿透非均匀介质反散射中传输特征值问题的特征,构造Robin-Dirichlet算子,并用边界积分算子表示Robin-Dirichlet算子。然后,由格林公式、Fredholm变换和迹定理,证明了一种算子的强制性。其次,应用紧嵌入定理和Lax-Milgram定理,证明了另一种算子的紧性。最后,结合两种算子的性质,证明了Robin-Dirichlet算子的差算子是指数为0的Fredholm算子且解析。
The transmission eigenvalue problems in inverse scattering of penetrable inhomogeneous media is studied by using a boundary integral equation method.Firstly,the Robin-Dirichlet operator is constructed from the transmission eigenvalue problems in inverse scattering of penetrable inhomogeneous media,and the Robin-Dirichlet operator is represented by the boundary integral operator.Secondly,the coerciveness of an operator is proved by the Green's formula,Fredholm alternative and the trace theorem.Thirdly,the compact embedding theorem and Lax-Milgram theorem are applied to prove the compactness of another operator.Finally,combining the properties of the two operators,it is proved that the difference operator of the Robin-Dirichlet operator is an analytic Fredholm operator whose exponent is 0.
边界积分方程方法传输特征值问题Robin-Dirichlet算子Fredholm算子
a boundary integral equation methodtransmission eigenvalue problemsRobin-Dirichlet operatorFredholm operator
COSSONNIÈRE A, HADDAR H. Surface integral formulation of the interior transmission problem [J]. J Integral Equ Appl, 2013, 25(3): 341-376.
BEYN W. An integral method for solving nonlinear eigenvalue problems [J]. Linear Algebra Appl, 2012, 436(10): 3839-3863.
CAKONI F, KIRSCH A. On the interior transmission eigenvalue problem [J]. Int J Comput Sci Math, 2010, 3(1/2): 142-167.
MONK P, SUN J. Finite element methods for Maxwell’s transmission eigenvalues [J]. SIAM J Sci Comput, 2012, 34(3): B247-B264.
刘立汉, 崔晓英, 蔡静秋. 基于交互间隙法的内部Neumann反散射问题[J]. 中山大学学报(自然科学版), 2019, 58(1): 149-155.
刘立汉, 蔡静秋, 崔晓英. 基于正则的Newton迭代法的内部Neumann反散射问题[J]. 中山大学学报(自然科学版), 2019, 58(2): 135-141.
CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues [J]. SIAM J Math Anal, 2010, 42(1): 237-255.
SYLVESTER J. Discreteness of transmission eigenvalues via upper triangular compact operators [J]. SIAM J Math Anal, 2012, 44(1): 341-354.
SEROV V, SYLVESTER J. Transmission eigenvalues for degenerate and singular cases [J].Inverse Probl, 2012, 28(6): 065004.
张亚林. 逆散射理论中传播特征值问题的若干结果[D]. 天津: 天津大学, 2015.
COLTON D, LEUNG Y. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues [J].Inverse Probl, 2013, 29(10): 104008.
ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem [J].Inverse Probl, 2013, 29(10): 104001.
PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues [J]. SIAM J Math Anal, 2008, 40(2): 738-753.
CAKONI F, HADDAR H, MENG S. Boundary integral equations for the transmission eigenvalue problem for Maxwell's equations [J]. J Integral Equ Appl, 2015, 27(3): 375-406.
CAKONI F, KRESS R. A boundary integral equation method for the transmission eigenvalue problem [J]. Appl Anal, 2017, 96(1): 23-38.
CAKONI F, YAMAN O, KRESS R, et al. A boundary integral equation for the transmission eigenvalue problem for Maxwell equation [J]. Math Methods Appl Sci, 2018, 41(4): 1316-1330.
LAKSHTANOV E, VAINBERG B. Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem [J]. Inverse Probl,2013, 29(10): 104003.
CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Math, 2010, 348(7): 379-383.
KIRSCH A, LECHLEITER A. The inside-outside duality for scattering problems by inhomogeneous media [J]. Inverse Probl, 2013, 29(10): 104011.
MCLEAN W. Strongly elliptic systems and boundary integral equations [M]. Cambridge: Cambridge University Press, 2000.
COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory [M]. New York: Springer-Verlag, 2013.
KRESS R. Integral equations [M]. 3rd ed. New York: Springer-Verlag, 2014.
TAYLOR M. Partial differential equations [M]. New York: Springer-Verlag, 1996.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构