1.广东第二师范学院计算机学院,广东 广州 510303
2.华南理工大学自动化科学与工程学院,广东 广州 510640
3.广州现代产业技术研究院,广东 广州 511458
邬依林(1970年生),男;研究方向:复杂系统建模、图像处理、网络控制、非线性系统;E-mail:lyw@gdei.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2021-08-24,
收稿日期:2021-02-02,
录用日期:2021-03-18
扫 描 看 全 文
邬依林,萧华希,李万益等.太阳能电池背面电极的分割与缺陷检测[J].中山大学学报(自然科学版),2022,61(04):160-169.
WU Yilin,XIAO Huaxi,LI Wanyi,et al.Segmentation and defect detection for back electrodes in solar cells[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):160-169.
邬依林,萧华希,李万益等.太阳能电池背面电极的分割与缺陷检测[J].中山大学学报(自然科学版),2022,61(04):160-169. DOI: 10.13471/j.cnki.acta.snus.2021A008.
WU Yilin,XIAO Huaxi,LI Wanyi,et al.Segmentation and defect detection for back electrodes in solar cells[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):160-169. DOI: 10.13471/j.cnki.acta.snus.2021A008.
自动化质量检测系统是太阳能电池生产过程中必不可少的环节,其目的是识别潜在产品缺陷,但鲜见对太阳能电池的背面电极的检测问题的文献,针对该问题提出一种完整的背面电极分割和缺陷检测算法。首先,利用边缘强度投影和模板匹配方法依次获得电极的粗略位置和较精准位置;然后采用阈值法和种子生长法提取电极边缘点。第三,利用边缘点生成一个闭合的区域来表示电极的形状。最后,设计了一种判断电极是否存在缺陷的方法。为了验证该方法的性能,针对电极分割的精确度进行了实验。实验结果表明,提出的电极分割检测方案优于实验中四种著名的方法。
An automatic quality inspection system, aiming to identify potential product defects, is essential for the production of solar cells. But few papers focus on the detection of back electrodes in solar cells, for which a complete algorithm is proposed to segment back electrodes and check for defects on them. Firstly, coarse and fine positions of electrodes are obtained using the edge intensity projection and template matching method. Secondly, the edge of electrodes is extracted by the threshold method and seed growing method. Thirdly, an edge-to-region method is adopted to generate a closed region with edge points. Finally, a method is designed to judge whether there are defects in electrodes or not. To verify the performance of the proposed method, an experiment is carried out. From the experiment result, the proposed segmentation method for electrodes outperforms the four famous methods implemented in the experiment.
机器视觉缺陷检测图像分割太阳能电池
machine visiondefect detectionimage segmentationsolar cell
REBHI A, ABID S, FNAIECH F. Fabric defect detection using local homogeneity and morphological image processing [C]//2016 International Image Processing, Applications and Systems (IPAS), IEEE, 2016. [DOI: 10.1109/IPAS. 2016. 7880062http://dx.doi.org/10.1109/IPAS.2016.7880062]
BAI L, YANG X, GAO H. A novel coarse-fine method for ball grid array component positioning and defect inspection [J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 5023-5031.
ZHANG X, SUN H, ZHOU Y, et al. A novel method for surface defect detection of photovoltaic module based on independent component analysis [J]. Mathematical Problems in Engineering, 2013, 2013(6): 147-160.
DHIMISH M, HOLMES V, MATHER P. Novel photovoltaic micro crack detection technique [J]. IEEE Transactions on Device and Materials Reliability, 2019, 19(2): 304-312.
WIN M, BUSHROA A R, HASSAN M A, et al. A contrast adjustment thresholding method for surface defect detection based on mesoscopy [J]. IEEE Transactions on Industrial Informatics, 2015, 11(3): 642-649.
OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62-66.
MA R, DENG S, SUN H, et al. An algorithm for fabric defect detection based on adaptive canny operator [C]//2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS), 2019: 475-481. [DOI:10.1109/ ICICAS48597.2019.00105http://dx.doi.org/10.1109/ICICAS48597.2019.00105]
CANNY J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
CHEN L C, KUO C C. Automatic TFT-LCD mura defect inspection using discrete cosine transform-based background filtering and ‘just noticeable difference’ quantification strategies [J]. Measurement Science & Technology, 2007, 19(1): 015507.
DORNAIKA F, MOUJAHID A, MERABET Y E, et al. Building detection from orthophotos using a machine learning approach: An empirical study on image segmentation and descriptors [J]. Expert Systems with Applications, 2016, 58(1): 130-142.
张竞丹. 基于图的脑组织磁共振图像分割方法[J]. 中山大学学报(自然科学版) , 2010,49(2): 53-59.
李震,洪添胜,王卫星,等, 基于多元统计的柑桔图像分割和目标识别[J]. 中山大学学报(自然科学版), 2005, 44(2): 136-140.
FANG X, WU F, ZENG Z, et al. An image segmentation algorithm for LED bracket's detection [C]//2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2016:1486-1490. [DOI: 10.1109/IMCEC.2016.7867463http://dx.doi.org/10.1109/IMCEC.2016.7867463]
SUNDARA S M, AARTHI R. Segmentation and evaluation of white blood cells using segmentation algorithms [C]//2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019:1143-1146.
CASELLES V, CATTÉ F, COLL T, et al. A geometric model for active contours in image processing [J]. Numerische Mathematik, 1993, 66(1): 1-31.
CHAN T F, VESE L A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
CHEN Y F, YANG F S, SU E, et al. Automatic defect detection system based on deep convolutional neural networks [C]//2019 International Conference on Engineering, Science, and Industrial Applications (ICESI), 2019: 6-9. [DOI:10.1109/ICESI.2019.8863029http://dx.doi.org/10.1109/ICESI.2019.8863029]
DONG X, TAYLOR C J, COOTES T F. Small defect detection using convolutional neural network features and random forests [C]//2018 European Conference on Computer Vision Workshops, 2018: 398-412.
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
YIN P, YUAN R, CHENG Y, et al. Deep guidance network for biomedical image segmentation [J]. IEEE Access, 2020, 8: 116106-116116.
GOYAL M, OAKLEY A, BANSAL P, et al. Skin lesion segmentation in dermoscopic images with ensemble deep learning methods [J]. IEEE Access, 2020, 8: 4171-4181.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构