1.中山大学计算机学院,广东 广州 510006
2.中山大学软件工程学院,广东 珠海 519082
吴嘉婧(1989年生),女;研究方向:区块链、图挖掘、网络科学;E-mail: wujiajing@mail.sysu.edu.cn
郑子彬(1982年生),男;研究方向:区块链、服务计算、软件工程,教授、博士生导师,中山大学软件工程学院副院长、国家数字家庭工程技术研究中心副主任、IET Fellow、国家优秀青年科学基金获得者。获得教育部自然科学奖二等奖,青年珠江学者、珠江科技新星。E-mail: zhzibin@mail.sysu.edu.cn
纸质出版日期:2021-09-25,
网络出版日期:2021-05-21,
收稿日期:2021-02-03,
录用日期:2021-04-20
扫 描 看 全 文
吴嘉婧,刘洁利,林丹等.区块链交易网络研究综述[J].中山大学学报(自然科学版),2021,60(05):1-12.
WU Jiajing,LIU Jieli,LIN Dan,et al.Blockchain transaction networks: A survey[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(05):1-12.
吴嘉婧,刘洁利,林丹等.区块链交易网络研究综述[J].中山大学学报(自然科学版),2021,60(05):1-12. DOI: 10.13471/j.cnki.acta.snus.2021A007.
WU Jiajing,LIU Jieli,LIN Dan,et al.Blockchain transaction networks: A survey[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(05):1-12. DOI: 10.13471/j.cnki.acta.snus.2021A007.
自以比特币为代表的区块链加密货币交易平台诞生以来,基于区块链技术的加密货币获得了广泛的关注并积累了大量的交易数据。这些交易数据包含了丰富的信息和完整的金融活动痕迹,为研究者在这一领域进行知识发现提供了前所未有的机会。网络是描述现实世界中交互系统的通用语言,现有的区块链交易研究中有相当一部分是从网络的角度来进行的。本综述旨在从网络科学的角度分析和总结现有的有关区块链加密货币交易的文献。首先介绍了加密货币交易网络分析的背景信息,然后从交易网络建模、交易网络分析和交易网络上的识别技术3个方面对现有研究进行了综述,希望能为相关领域的研究者提供一个系统的指导。
Since the debut of Bitcoin, a blockchain platform, blockchain-based cryptocurrencies have received wide attention and accumulated a wealth of transaction data. These transaction data include rich information and complete traces of financial activities, and therefore provide us an unprecedented opportunity for knowledge discovery. Networks are a universal language for describing interacting real systems, and much work on cryptocurrency transactions is conducted from a network perspective. This survey summarizes the existing work on analyzing and understanding blockchain transactions, aiming to provide a systematic guideline in this area. We first introduce the background of blockchain transaction, and then review existing research in three different aspects, i.e., transaction network modeling, transaction network analysis, and network-based detection technology, the purpose being to provide a systematic guideline for researchers in this area.
区块链加密货币交易复杂网络数据挖掘
blockchaincryptocurrency transactionscomplex networksdata mining
NAKAMOTO S. Bitcoin: A peer-to-peer electronic cash system[EB/OL].[2021-05-05]. https://bitcoin.org/bitcoin.pdfhttps://bitcoin.org/bitcoin.pdf.
PANARELLO A, TAPAS N, MERLINO G, et al. Blockchain and IoT integration: A systematic survey[J]. Sensors, 2018, 18(8): 2575.
LU Y. Blockchain: A survey on functions, applications and open issues[J]. Journal of Industrial Integration and Management, 2018, 3(4): 1850015.
ABBAS Q E, JANG S B. A survey of blockchain and its applications[C]//2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019: 1-3.
VINCED. Namecoin:A distributed naming system based on Bitcoin[EB/OL].[2021-05-05]. https://www.namecoin.orghttps://www.namecoin.org.
LEE C. Litecoin: Open source P2P digital currency[EB/OL].[2021-05-05]. https://litecoin.orghttps://litecoin.org.
KING S, NADAL S. PPCoin: Peer-to-peer crypto-currency with proof-of-stake[EB/OL].[2021-05-05]. https://www.peercoin.net/https://www.peercoin.net/.
MONERO. Monero:A secure, private, untraceable cryptocurrency[EB/OL].[2021-05-05]. https://www.getmonero.orghttps://www.getmonero.org.
SASSON E B, CHIESA A, GARMAN C, et al. Zerocash: Decentralized anonymous payments from bitcoin[C]//2014 IEEE Symposium on Security and Privacy. Berkeley, CA, USA: IEEE, 2014: 459-474.
XU B,LUTHRA D,COLE Z,et al. EOS:An architectural,performance,and economic analysis [EB/OL].[2021-05-05]. https://blog.bitmex.com/wp-content/uploads/2018/11/eos-test-report.pdfhttps://blog.bitmex.com/wp-content/uploads/2018/11/eos-test-report.pdf.
AMSDEN Z, ARORA R, BANO S, et al. The libra blockchain[EB/OL].[2021-05-05]. https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-04-09.pdfhttps://developers.libra.org/docs/assets/papers/the-libra-blockchain/2020-04-09.pdf.
REID F,HARRIGAN M. An analysis of anonymity in the bitcoin system[C]//ALTSHULER Y, et al, eds. Security and Privacy in Social Networks. Springer: 2013:197-223.
BAUMANN A, FABIAN B, LISCHKE M. Exploring the Bitcoin network[C]//Proceedings of the 10th International Conference on Web Information Systems and Technologies, 2014: 369-374.
PHAM T, LEE S. Anomaly detection in the Bitcoin system-A network perspective [J/OL]. arXiv:1611.03942, 2016.
MAESA D D F, MARINO A, RICCI L. Uncovering the bitcoin blockchain: An analysis of the full users graph[C]// International Conference on Data Science and Advanced Analytics. IEEE, 2016: 537-546.
CHEN T, ZHU Y X, LI Z, et al. Understanding Ethereum via graph analysis[C]//Proceedings of the Conference on Computer Communications. Honolulu, HI, USA: IEEE, 2018: 1484-1492.
LIN D, WU J J, YUAN Q, et al. Modeling and Understanding Ethereum transaction records via a complex network approach[J]. IEEE Transactions on Circuits and Systems II: Express Briefs. IEEE, 2020, 67(11): 2737-2741.
MAESA D D F, MARINO A, RICCI L. Data-driven analysis of Bitcoin properties: exploiting the users graph[J]. International Journal of Data Science and Analytics, 2018, 6(1): 63-80.
ALQASSEM I, RAHWAN I, SVETINOVIC D. The anti-social system properties: Bitcoin network data analysis[J]//IEEE Transactions on Systems, Man, and Cybernetics: Systems.2020, 50(1): 21-31.
KONDOR D, PÓSFAI M, CSABAI I, et al. Do the rich get richer? An empirical analysis of the Bitcoin transaction network[J]. PLoS One, 2014, 9(5): e86197.
MOTAMED A P, BAHRAK B. Quantitative analysis of cryptocurrencies transaction graph[J]. Applied Network Science, 2019, 4: 131.
LISCHKE M, FABIAN B. Analyzing the bitcoin network: The first four years[J]. Future Internet, 2016, 8(1): 7.
GAIHRE A, LUO Y, LIU H. Do Bitcoin users really care about anonymity? An analysis of the Bitcoin transaction graph[C]//Proceedings of the IEEE International Conference on Big Data. Seattle, WA, USA: IEEE, 2018: 1198-1207.
NEWMAN M E J. Networks: An introduction[M]. London: Oxford University Press, 2010.
GUO D C, DONG J Q, WANG K. Graph structure and statistical properties of Ethereum transaction relationships[J]. Information Sciences, 2019, 492: 58-71.
MORENO-SANCHEZ P, MODI N, SONGHELA R, et al. Mind your credit: Assessing the health of the Ripple credit network[C]//Proceedings of the World Wide Web Conference. Lyon, France: ACM, 2018: 329-338.
BAI Q L, ZHANG C, XU Y D, et al. Evolution of Ethereum: A temporal graph perspective[J/OL]. arXiv:2001.05251, 2020.
PARANJAPE A, BENSON A R, LESKOVEC J. Motifs in temporal networks[C]//Proceedings of the International Conference on Web Search and Data Mining. Cambridge, United Kingdom: ACM, 2017: 601-610.
RON D, SHAMIR A. Quantitative analysis of the full Bitcoin transaction graph[C]//Proceedings of the International Conference on Financial Cryptography and Data Security. Okinawa, Japan: Springer, 2013: 6-24.
MAESA D D F, MARINO A, RICCI L. An analysis of the bitcoin users graph: inferring unusual behaviours[C]//Proceedings of the International Workshop on Complex Networks and Their Applications. Springer, 2016: 749-760.
CHEN W L, ZHANG T, CHEN Z G, et al. Traveling the token world: A graph analysis of Ethereum ERC20 token ecosystem[C]// Proceedings of the World Wide Web Conference. Taipei, Taiwan: ACM, 2020: 1411-1421.
LIANG J Q, LI L J, ZENG D. Evolutionary dynamics of cryptocurrency transaction networks: An empirical study[J]. PLoS ONE, 2018, 13(8): 1-18.
HARRIGAN M, FRETTER C. The unreasonable effectiveness of address clustering[C]// Proceedings of the IEEE International Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress. Toulouse, France: IEEE, 2016: 368-373.
REMY C, RYM B, MATTHIEU L. Tracking Bitcoin users activity using community detection on a network of weak signals[C]//Proceedings of the 2017 International Conference on Complex Networks and Their Applications. Lyon, France: Springer, 2017: 166-177.
KLUSMAN R, DIJKHUIZEN T. Deanonymisation in ethereum using existing methods for bitcoin[J/OL].[2021-05-05]. https://homepages.staff.os3.nl/~delaat/rp/2017-2018/p61/report.pdfhttps://homepages.staff.os3.nl/~delaat/rp/2017-2018/p61/report.pdf.
VICTOR F. Address clustering heuristics for Ethereum[C]//Proceedings of the 2020 International Conference on Financial Cryptography and Data Security. Kota Kinabalu, Sabah, Malaysia: Springer, 2020: 617-633.
ANDROULAKI E, KARAME G O, ROESCHLIN M, et al. Evaluating user privacy in Bitcoin[C]//Proceedings of the International Conference on Financial Cryptography and Data Security. Okinawa, Japan: Springer, 2013, 7859: 34-51.
JOURDAN M A, BLANDIN S, WYNTER L, et al. Characterizing entities in the Bitcoin blockchain[C]//Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. Singapore: IEEE, 2018: 55-62.
HARLEV M A, SUN YIN H H, LANGENHELDT K C, et al. Breaking bad: De-anonymising entity types on the bitcoin blockchain using supervised machine learning[C]//Proceedings of the 51st Hawaii International Conference on System Sciences. Hawaii, USA: 2018.
SHAO W, LI H, CHEN M, et al. Identifying Bitcoin users using deep neural network[C]//Proceedings of the 18th International Conference on Algorithms and Architectures for Parallel Processing. Guangzhou, China: Springer, 2018: 178-192.
FLEDER M, KESTER M S, PILLAI S. Bitcoin transaction graph analysis[J/OL]. arXiv:1502.01657, 2015.
MÖSER M, BÖHME R, BREUKER D. An inquiry into money laundering tools in the Bitcoin ecosystem[C]//Proceedings of the APWG eCrime Researchers Summit. San Francisco, CA, USA: IEEE, 2013: 1-14.
McGINN D, BIRCH D, AKROYD D, et al. Visualizing dynamic Bitcoin transaction patterns[J]. Big Data, 2016, 4(2): 109-119.
CHEN W L, WU J J, ZHENG Z B, et al. Market manipulation of Bitcoin: Evidence from mining the Mt. Gox transaction network[C]//Proceedings of the IEEE Conference on Computer Communications. Paris, France: IEEE, 2019: 964-972.
McGINN D, McLLWRAITH D, GUO Y. Towards open data blockchain analytics: A Bitcoin perspective[J]. Royal Society Open Science, 2018, 5(8): 180298.
RANSHOUS S, JOSLYN C A, KREYLING S, et al. Exchange pattern mining in the Bitcoin transaction directed hypergraph[C]//Proceedings of the International Conference on Financial Cryptography and Data Security. Malta: Springer, 2017: 248-263.
WU J J, LIU J, CHEN W L, et al. Detecting mixing services via mining Bitcoin transaction network with hybrid motifs [J/OL]. arXiv:2001.05233, 2020.
ZOLA F, BRUSE J L, EGUIMENDIA M, et al. Bitcoin and cybersecurity: Temporal dissection of blockchain data to unveil changes in entity behavioral patterns[J]. Applied Sciences, 2019, 9(23): 5003.
VASEK M, MOORE T. There′s no free lunch, even using Bitcoin: Tracking the popularity and profits of virtual currency scams[C]//Proceedings of the International Conference on Financial Cryptography and Data Security. Puerto Rico: Springer, 2015: 44-61.
BIAN S Q, DENG Z P, LI F, et al. IcoRating: A deep-learning system for scam ICO identification [J/OL]. arXiv:1803.03670, 2018.
TORRES C F, SEICHEN M, STATE R. The art of the scam: Demystifying honeypots in Ethereum smart contracts[C]//Proceedings of the 28th USENIX Security Symposium. Santa Clara, CA, USA: USENIX Association, 2019: 1591-1607.
MONAMO P, MARIVATE V N, TWALA B. Unsupervised learning for robust Bitcoin fraud detection[C]//Proceedings of the Information Security for South Africa. Johannesburg, South Africa: IEEE, 2016: 129-134.
HANDASON T D S, LAU W C, HU B, et al. Identifying illicit accounts in large scale e-payment networks - A graph representation learning approach [J/OL]. arXiv:1906.05546, 2019.
WU J J, YUAN Q, LIN D, et al. Who are the phishers? Phishing scam detection on Ethereum via network embedding[J/OL]. IEEE Transactions on Systems, Man, Cybernetics: System, 2020.https://ieeexplore.ieee.org/abstract/document/9184813https://ieeexplore.ieee.org/abstract/document/9184813.
LIN D, WU J J, YUAN Q, et al. T-EDGE: Temporal weighted multidigraph embedding for Ethereum transaction network analysis[J]. Frontiers of Physics, 2020, 8: 204.
BRYANS D. Bitcoin and money laundering: Mining for an effective solution[J]. Indiana Law Journal, 2014, 89: 441-472.
WEBER M, DOMENICONI G, CHEN J, et al. Anti-money laundering in Bitcoin: Experimenting with graph convolutional networks for financial forensics[J/OL]. arXiv:1908.02591, 2019.
PRADO-ROMERO M A, DOERR C, GAGO-ALONSO A. Discovering Bitcoin mixing using anomaly detection[C]//Proceedings of the Iberoamerican Congress on Pattern Recognition. Valparaiso, Chile: Springer, 2017, 10657: 534-541.
HU Y N, SENEVIRATNE S, THILAKARATHNA K, et al. Characterizing and detecting money laundering activities on the Bitcoin network[J/OL]. arXiv:1912.12060, 2019.
PEROZZI B, Al-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA: Association for Computing Machinery, 2014: 701-710.
GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA: Association for Computing Machinery, 2016: 855-864.
di BATTISTA G, di DONATO V, PATRIGNANI M, et al. Bitconeview: Visualization of flows in the Bitcoin transaction graph[C]//Proceedings of the IEEE Symposium on Visualization for Cyber Security. Chicago, IL, USA: IEEE Computer Society, 2015: 1-8.
PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: Evolving graph convolutional networks for dynamic graphs[J/OL]. arXiv:1902.10191, 2019.
AKCORA C G, LI Y, GEL Y R, et al. BitcoinHeist: Topological data analysis for ransomware detection on the Bitcoin blockchain[J/OL]. arXiv:1906.07852, 2019.
CONTI M, GANGWAL A, RUJ S. On the economic significance of ransomware campaigns: A Bitcoin transactions perspective[J]. Computers & Security, 2018, 79: 162-189.
FOLEY S, KARLSEN J R, PUTNIŅŠ T J. Sex, drugs, and Bitcoin: How much illegal activity is financed through cryptocurrencies?[J]. The Review of Financial Studies, 2019, 32(5): 1798-1853.
0
浏览量
0
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构