1.渭南师范学院数学与统计学院,陕西 渭南 714099
2.陕西师范大学数学与统计学院,陕西 西安 710119
赵小鹏(1968年生),男;研究方向:算子理论与算子代数;E-mail:zxp@wnu.edu.cn
曹小红(1972年生),女;研究方向:算子理论与算子代数;E-mail:xiaohongcao@snnu.edu.cn
纸质出版日期:2022-11-25,
网络出版日期:2022-07-28,
收稿日期:2021-01-15,
录用日期:2021-09-02
扫 描 看 全 文
赵小鹏,戴磊,曹小红.有界线性算子的(R1)性质及其摄动[J].中山大学学报(自然科学版),2022,61(06):172-179.
ZHAO Xiaopeng,DAI Lei,CAO Xiaohong.The property (R1) and its perturbations for bounded linear operators[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):172-179.
赵小鹏,戴磊,曹小红.有界线性算子的(R1)性质及其摄动[J].中山大学学报(自然科学版),2022,61(06):172-179. DOI: 10.13471/j.cnki.acta.snus.2021A005.
ZHAO Xiaopeng,DAI Lei,CAO Xiaohong.The property (R1) and its perturbations for bounded linear operators[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):172-179. DOI: 10.13471/j.cnki.acta.snus.2021A005.
利用拓扑一致降标诱导的谱集,给出了算子
<math id="M1"><mi>T</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435500&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435499&type=
2.28600001
2.62466669
及算子函数
<math id="M2"><mi>p</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435493&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435503&type=
6.85799980
3.55599999
有
<math id="M3"><mo stretchy="false">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435495&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435509&type=
5.58799982
3.89466691
性质的等价性刻画。另外,上三角算子矩阵的
<math id="M4"><mo stretchy="false">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435564&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435549&type=
5.58799982
3.89466691
性质的稳定性得到了研究。
Using the spectrum introduced by the property of topological uniform descent, we give the necessary and sufficient conditions for which the property
<math id="M5"><mo stretchy="false">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435533&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435518&type=
6.43466663
4.57200003
holds for bounded linear operators
<math id="M6"><mi>T</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435525&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435535&type=
2.28600001
2.62466669
and operator functions
<math id="M7"><mi>p</mi><mo stretchy="false">(</mo><mi>T</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435540&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435538&type=
6.85799980
3.55599999
. In addition, the perturbations of property
<math id="M8"><mo stretchy="false">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435589&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435570&type=
6.43466663
4.57200003
for upper triangular operator matrices is considered.
拓扑一致降标<math id="M9"><mo stretchy="false">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435564&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435549&type=5.587999823.89466691性质谱
topological uniform descentproperty<math id="M10"><mtext> </mtext><mo stretchy="false">(</mo><msub><mrow><mi>R</mi></mrow><mrow><mn mathvariant="normal">1</mn></mrow></msub><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435566&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435556&type=7.196666244.57200003spectrum
WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist [J]. Rend Circ Mat Palermo, 1909, 27(1): 373-392.
HARTE R, LEE W Y. Another note on Weyl's theorem [J]. Trans Amer Math Soc, 1997, 349(5): 2115-2124.
RAKOCEVIC V. Operators obeying a-Weyl's theorem [J]. Rev Roumaine Math Pures Appl, 1986, 34(10): 915-919.
RAKOCEVIC V. On a class of operators [J]. Mat Vesnik, 1985, 37(92): 423-425.
AIENA P, GUILLÉN J R, PEÑA P. Property <math id="M581"><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438610&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438609&type=4.487333302.96333337 for bounded linear operators [J]. Mediterr J Math, 2011, 8(4): 491-508.
AIENA P, APONTE E, GUILLÉN J R,et al. Property <math id="M582"><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438610&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438609&type=4.487333302.96333337 under perturbations [J]. Mediterr J Math, 2013, 10(1): 367-382.
JIA B T, FENG Y L. Property <math id="M583"><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438610&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438609&type=4.487333302.96333337 under compact perturbations [J]. Mediterr J Math, 2020, 17(2):73.
赵小鹏, 戴磊, 曹小红. 有界线性算子的拓扑一致降标与(R)性质 [J]. 山东大学学报(理学版), 2021, 56(12): 59-66.
GRABINER S. Uniform ascent and descent of bounded operators [J]. J Math Soc Japan, 1982, 34(2): 317-337.
DONG J, CAO X H. Compact perturbations of both SVEP and Weyl's theorem for 3×3 upper triangular operator matrices[J]. Linear Multilinear Algebra, 2020, 68(10): 2020-2033.
DONG J, CAO X H. The (generalized) Weylness of upper triangular operator matrices [J]. Anal Math,2020,46(3):465-481.
CUI M M, CAO X H. Weyl's theorem for upper triangular operator matrix and perturbations [J]. Linear Multilinear Algebra, 2018,66(7): 1299-1310.
吴学俪,曹小红, 张敏. 上三角算子矩阵的(ω)性质的摄动[J]. 西北大学学报(自然科学版),2017, 47(2):167-173.
闫慧凰, 曹小红. 有界线性算子及其函数演算的Weyl定理[J]. 中山大学学报(自然科学版), 2020, 59(2):22-27.
CAO X H, GUO M Z. MENG B. Semi-Fredholm spectrum and Weyl's theorem for operator matrices [J]. Acta Math Sin (Engl Ser), 2006, 22(1): 169-178.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构