广州华商学院数据科学学院,广东 广州 511300
石金诚(1983年生),男;研究方向:偏微分方程;E-mail:shijc0818@gdhsc.edu.cn
纸质出版日期:2023-05-25,
网络出版日期:2023-03-18,
收稿日期:2021-01-11,
录用日期:2021-03-05
扫 描 看 全 文
石金诚.多孔介质中Brinkman方程组解的连续依赖性[J].中山大学学报(自然科学版),2023,62(03):161-168.
SHI Jincheng.Continuous dependence of solutions for the Brinkman equations in porous media[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):161-168.
石金诚.多孔介质中Brinkman方程组解的连续依赖性[J].中山大学学报(自然科学版),2023,62(03):161-168. DOI: 10.13471/j.cnki.acta.snus.2021A004.
SHI Jincheng.Continuous dependence of solutions for the Brinkman equations in porous media[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2023,62(03):161-168. DOI: 10.13471/j.cnki.acta.snus.2021A004.
考虑了三维有界凸区域上带有Soret效应的Brinkman方程组的连续依赖性。利用微分不等式,得到解的相关估计,尤其是推导出了盐浓度的四阶范数估计。最终运用能量方法和先验估计,建立了方程组的解对Brinkman系数
<math id="M1"><mi>λ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49418949&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49418943&type=
2.28600001
2.62466669
的连续依赖性。
The continuous dependence of Brinkman equations with Soret effect on a three-dimensional bounded convex domain is considered. By using differential inequality, the correlation estimates of the solution is obtained, especially the fourth-order norm estimation of salt concentration is derived. Finally, using the energy method and the prior estimation, the continuous dependence of the solution of the equations on Brinkman coefficient
<math id="M2"><mi>λ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49418987&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49418975&type=
2.28600001
2.62466669
is established.
Brinkman方程组连续依赖性Brinkman系数Soret系数
Brinkman equationscontinuous dependenceBrinkman coefficientSoret coefficient
李远飞, 2019a.大尺度海洋大气动力学三维黏性原始方程对边界参数的连续依赖性[J]. 吉林大学学报(理学版), 57(5): 1053-1059.
李远飞, 2019b.原始方程组对黏性系数的连续依赖性[J]. 山东大学学报(理学版),54(12): 12-23.
李远飞,郭连红, 2019.具有边界反应Brinkman-Forchheimer型多孔介质的结构稳定性[J]. 高校应用数学学报A辑, 34(3): 315-324.
李远飞, 2020.海洋动力学中二维黏性原始方程组解对热源的收敛性[J]. 应用数学和力学, 41(3): 339-352.
AMES K A, STRAUGHAN B, 1997. Non-standard and improperly posed problems[M]. San Diego: Academic Press.
CHEN W H, LIU Y, 2016. Structural stability for a Brinkman-Forchheimer type model with temperature-dependent solubility[J]. Bound Value Probl,(1): 1-14.
CIARLETTA M, STRAUGHAN B, TIBULLO V, 2015. Structural stability for a thermal convection model with temperature dependent solubility[J]. Nonlinear Anal Real World Appl, 22: 34-43.
CICHON M, STRAUGHAN B, YANTIR A, 2015. On continuous dependence of solutions of dynamic equations[J]. Appl Math Comput, 252: 473-483.
FLAVIN J N, RIONERO S, 1995. Qualitative estimates for partial differential equations: An introduction[M]. Boca Raton: CRC Press.
FRANCHI F, STRAUGHAN B, 2003. Continuous dependence and decay for the Forchheimer equations[J]. Proc R Soc Lond A, 459(2040): 3195-3202.
LIN C, PAYNE L E, 2007. Structural stability for a Brinkman fluid[J]. Math Meth Appl Sci, 30(5): 567-578.
LIU Y, 2017. Continuous dependence for a thermal convection model with temperature dependent solubility[J]. Appl Math Comput, 308: 18-30.
LIU Y, XIAO S Z, 2018a. Structural stability for the Brinkman fluid interfacing with a Darcy fluid in an unbounded domain[J]. Nonlinear Anal Real World Appl, 42: 308-333.
LIU Y, XIAO S Z, LIN Y W, 2018b. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain[J]. Math Comput Simul, 150: 66-82.
NIELD D A, BEJAN A, 1992. Convection in porous media[M]. New York: Springer-Verlag.
PAYNE L E, SONG J C, 2007. Spatial decay in a double diffusive convection problem in Darcy flow[J]. J Math Anal Appl, 330(2): 864-875.
STRAUGHAN B, 2008. Stability and wave motion in porous media[M]. New York: Springer-Verlag.
STRAUGHAN B, HUTTER K, 1999. A priori bounds and structural stability for double diffusive convection incorporating the Soret effect[J]. Proc R Soc Lond A, 455(1983):767-777.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构