云南民族大学数学与计算机科学学院,云南 昆明 650504
李婉婷(1995年生),女;研究方向:有限置换群、代数图论;E-mail:1847830346@qq.com
凌波(1986年生),男;研究方向:有限置换群、代数图论;E-mail:bolinggxu@163.com
纸质出版日期:2022-11-25,
网络出版日期:2022-04-28,
收稿日期:2021-01-10,
录用日期:2021-05-08
扫 描 看 全 文
李婉婷,凌波.交错群A167上的连通7度2-传递非正规Cayley图[J].中山大学学报(自然科学版),2022,61(06):166-171.
LI Wanting,LING Bo.A 2-transitive 7-valent non-normal Cayley graph on the alternating group A167[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):166-171.
李婉婷,凌波.交错群A167上的连通7度2-传递非正规Cayley图[J].中山大学学报(自然科学版),2022,61(06):166-171. DOI: 10.13471/j.cnki.acta.snus.2021A003.
LI Wanting,LING Bo.A 2-transitive 7-valent non-normal Cayley graph on the alternating group A167[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(06):166-171. DOI: 10.13471/j.cnki.acta.snus.2021A003.
在交错群
<math id="M3"><msub><mrow><mi>A</mi></mrow><mrow><mn mathvariant="normal">167</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432090&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432080&type=
4.74133301
3.21733332
上构造了一个具有非可解点稳定子群的连通7度2-传递非正规Cayley图,并证明了其全自同构群同构于
<math id="M4"><msub><mrow><mi>A</mi></mrow><mrow><mn mathvariant="normal">168</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432120&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432113&type=
4.74133301
3.21733332
。这是目前为止第一个关于有限非交换单群上的具有非可解点稳定子群的连通7度2-传递非正规Cayley图的例子。
We construct an example of a non-normal 2-transitive 7-valent Cayley graph on the alternating group
<math id="M5"><msub><mrow><mi>A</mi></mrow><mrow><mn mathvariant="normal">167</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432159&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432142&type=
5.41866684
3.72533321
, where the vertex stabilizer is insoluable, and show that the full automorphism group of this graph is isomorphic to the alternating group
<math id="M6"><msub><mrow><mi>A</mi></mrow><mrow><mn mathvariant="normal">168</mn></mrow></msub></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432191&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49432171&type=
5.41866684
3.72533321
. So far, this is the first example of connected 2-transitive 7-valent non-normal Cayley graph with insoluable vertex stabilizer on finite non-abelian simple groups.
对称图单群全自同构群非正规Cayley图
symmetric graphsimple groupfull automorphism groupnon-normal Cayley graph
何宣丽, 李样明, 王燕鸣. 含有C*-正规子群的有限群[J]. 中山大学学报(自然科学版), 2009, 48(5): 12-15.
李士恒, 赵先鹤. 非超可解极大子群指数为素数幂的有限群[J]. 中山大学学报(自然科学版), 2017, 56(2): 57-61+91.
刘哲, 余小芬, 娄本功. 3次自由次的拟本原和二部拟本原置换群[J]. 云南大学学报(自然科学版), 2012, 34(2): 125-128.
BIGGS N. Algebraic graph theory [M]. 2nd ed. Cambridge: Cambridge University Press, 1992.
XU M Y. Automorphism groups and isomorphisms of Cayley digraphs [J]. Discrete Math, 1998, 182(1/2/3): 309-319.
LI C H. Isomorphisms of finite Cayley graphs [D]. Perth: The University of Western Australia, 1996.
XU S J, FANG X G, WANG J, et al. On cubic <math id="M362"><mi>s</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435821&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435802&type=1.100666642.28600001-arc transitive Cayley graphs of finite simple groups [J]. European J Combin, 2005, 26: 133-143.
XU S J, FANG X G, WANG J, et al. 5-Arc transitive cubic Cayley graphs on finite simple groups [J]. European J Combin, 2007, 28: 1023-1036.
FANG X G, LI C H, XU M Y. On edge-transitive Cayley graphs of valency four [J]. European J Combin, 2004, 25: 1107-1116.
FANG X G, WANG J, ZHOU S M. Tetravalent 2-transitive Cayley graphs of finite simple groups and their automorphism groups [J/OL]. arXiv, 2016. https://doi.org/10.48550/arXiv.1611.06308https://doi.org/10.48550/arXiv.1611.06308.
ZHOU J X, FENG Y Q. On symmetric graphs of valency five [J]. Discrete Math, 2010, 310(12): 1725-1732.
LING B, LOU B G. A 2-arc transitive pentavalent Cayley graph of <math id="M363"><msub><mrow><mi mathvariant="bold">A</mi></mrow><mrow><mn mathvariant="normal">39</mn></mrow></msub></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435823&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49435805&type=4.233333593.21733332 [J]. Bull Aust Math Soc, 2016, 93: 441-446.
FANG X G, MA X S, WANG J. On locally primitive Cayley graphs of finite simple groups [J]. J Comb Theory, (Ser A), 2011, 118: 1039-1051.
PAN J M, YIN F G, LING B. Arc-transitive Cayley graphs on non-abelian simple groups with soluble vertex stabilizers and valency seven [J]. Discrete Math, 2019, 342(3): 689-696.
徐明曜. 有限群导引(上)[M].2版. 北京: 科学出版社, 1999.
GUO S T, LI Y T, HUA X H. (G,s)-transitive graphs of valency 7 [J]. Algebra Coll, 2016, 23: 493-500.
LI C H, LU Z P, WANG G X. Arc-transitive graphs of square-free order and small valency [J]. Discrete Math, 2016, 339(12): 2907-2918.
BOSMA W, CANNON J, PLAYOUST C. The Magma algebra system I: The user language [J]. J Symb Comput, 1997, 24: 235-265.
GORENSTEIN D. Finite simple groups [M].New York: Plenum Press, 1982.
HUPPERT B, LEMPKEN W. Simple groups of order divisible by at most four primes [J]. Proc F Scorina Gomel State Univ, 2000, 10: 64-75.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构