1.中山大学地理科学与规划学院,广东 广州 510275
2.广东国地规划科技股份有限公司,广东 广州 510650
张泽瑞(1996年生),男;研究方向:深度学习与遥感技术应用;E-mail:707458858@qq.com
刘小平(1978年生),男;研究方向:地理模拟、空间智能及优化决策;E-mail:liuxp3@mail.sysu.edu.cn
纸质出版日期:2022-03-25,
网络出版日期:2021-04-16,
收稿日期:2020-10-13,
录用日期:2020-11-02
扫 描 看 全 文
张泽瑞,刘小平,张鸿辉等.基于深度学习与多源遥感数据的新增建设用地自动检测[J].中山大学学报(自然科学版),2022,61(02):28-37.
ZHANG Zerui,LIU Xiaoping,ZHANG Honghui,et al.Automatic detection of newly increased construction land based on deep learning and multi-source remote sensing data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):28-37.
张泽瑞,刘小平,张鸿辉等.基于深度学习与多源遥感数据的新增建设用地自动检测[J].中山大学学报(自然科学版),2022,61(02):28-37. DOI: 10.13471/j.cnki.acta.snus.2020D058.
ZHANG Zerui,LIU Xiaoping,ZHANG Honghui,et al.Automatic detection of newly increased construction land based on deep learning and multi-source remote sensing data[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):28-37. DOI: 10.13471/j.cnki.acta.snus.2020D058.
新增建设用地自动检测可以为自然资源保护提供一种新型有效的技术支持,本文以广西贵港市为研究区域,提出一种基于深度学习与多源遥感数据的新增建设用地自动检测方法。首先通过在训练区中对高分辨率遥感影像进行影像预处理、数据增广与差值处理得到训练数据,然后利用深度学习语义分割模型(DeepLabv3+)进行训练、调优,接着在测试区中结合遥感影像(Sentinel-2A)的变化区域提取结果对可能出现新增建设用地的区域进行筛选,最后对不同裁剪重叠率下的新增建设用地的自动检测结果进行验证。结果表明:1)在测试区中裁剪重叠率越高,图斑检测正确率越高,但同时也增加了检测计算量与图斑错分率,裁剪重叠率为70%时能在检测正确率、计算量和错分率之间取得较好的平衡。2)在70%的裁剪重叠率下,新增建设用地图斑检测正确率85.16%,错分率36.57%,图斑平均IoU为57.23%,检测面积率74.52%。
The automatic detection of new construction land can provide a new and effective technical support for the protection of natural resources. Taking Guigang city of Guangxi Province as the research area, this paper proposes an automatic detection method for new construction land based on deep learning and multi-source remote sensing data. Firstly, in training area the high-resolution remote sensing image is performed preprocessing, data augmentation and difference processing to obtain training data. Secondly, deep learning semantic segmentation model(DeepLabv3+)is used for image training, tuning; and then according to the extraction results of the area where remote sensing image(Sentinel-2A) changed, the regions where newly increased construction land might appear are screened in the test area. Finally, the automatic detection results of newly increased construction land under different cropping overlap rates are verified. The results show that:1) In the test area, the higher the cropping overlap rate is, the higher the patches detection accuracy will be; whereas at the same time, the calculation amount of detection and the patches error rate increase. When the cropping overlap rate is 70%, a good balance can be achieved between the detection accuracy, calculation amount and the patches error rate. 2) A cropping overlap rate of 70% delivers 85.16% detection accuracy of the newly increased construction land patches,36.57% misclassification rate,57.23% IoU of the average patches and 74.52% detection area ratio.
深度学习多源遥感数据新增建设用地城乡规划
deep learningmulti-source remotes sensing datanewly increased construction landurban and rural planning
踪家峰,林宗建. 中国城市化70年的回顾与反思[J]. 经济问题,2019(9):1-9.
中华人民共和国国土资源部. 2016年中国国土资源公报[R]. 中华人民共和国国土资源部,2017.
玉也. 卫星遥感查出京郊大量违法建设[J]. 城市规划通讯, 2001(19): 13.
杨强,吴小忠,陈海. 西宁市利用卫星遥感监测成果开展土地执法检查情况分析[J]. 青海国土经略,2005(1):24-26.
王化娟. 一种基于遥感影像疑似违法用地图斑提取方法的研究[J]. 测绘与空间地理信息,2020, 43(3) :175-177.
“资源导刊”编辑部. 卫星图片核实取证,部门联动合力执法[J]. 资源导刊,2008(12):41.
曹端广,郑国强,马银,等. 基于倾斜摄影的城镇违法用地监测系统研究[J]. 山东建筑大学学报,2020,35(1):97-102.
余永欣,刘博文,秦飞,等. 基于地理国情的疑似违法用地违法建设监测方法[J]. 北京测绘,2019,33(9):1051-1056.
陈鹏,吕鹏远,宋蜜,等. 高空间分辨率遥感影像下的违法用地变化检测[J]. 测绘通报,2018(4):108-111.
孙笑古. 基于地理信息服务平台的土地督察违法用地监测系统研究[D]. 南京:南京大学,2011.
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
卢宏涛,张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理,2016,31(1):1-17.
VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: A brief review[J]. Computational Intelligence and Neuroscience,2018,2018: 1-13.
MA L, LIU Y, ZHANG X, et al. Deep learning in remote sensing applications: A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166-177.
高扬. 基于卷积神经网络的高分辨率遥感影像建筑物提取[D]. 南京:南京大学, 2018.
LI W, DONG R, FU H, et al. Integrating google earth imagery with landsat data to improve 30 m resolution land cover mapping[J]. Remote Sensing of Environment, 2020, 237: 111563.
WONG S C, GATT A, STAMATESCU V, et al. Understanding data augmentation for classification: when to warp?[C]//2016 International Conference on Digital Image Computing:Techniques and Applications(DICTA).IEEE, 2016: 1-6.
李新叶,龙慎鹏,朱婧. 基于深度神经网络的少样本学习综述[J]. 计算机应用研究,2020,37(8):2241-2247.
陈晋,何春阳,卓莉. 基于变化向量分析(CVA)的土地利用/覆盖变化动态监测(Ⅱ)——变化类型的确定方法[J]. 遥感学报,2001(5):346-352.
钟家强. 基于多时相遥感图像的变化检测[D]. 长沙:国防科学技术大学, 2005.
佃袁勇. 基于遥感影像的变化检测研究[D]. 武汉:武汉大学, 2005.
张振龙,曾志远,李硕,等. 遥感变化检测方法研究综述[J]. 遥感信息,2005(5):64-66.
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention,2015: 234-241.
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
CHEN L, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
CHEN L, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFS[J]. Computer Science, 2014(4):357-361.
LIU C, CHEN L, SCHROFF F, et al. Auto-DeepLab: Hierarchical neural architecture search for semantic image segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019: 82-92.
CHEN L, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:1706.05587,2017.
CHEN L, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 801-818.
LIN G, MILAN A, SHEN C, et al. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017: 2881-2890.
NIELSEN A A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing, 2007, 16(2): 463-478.
NIELSEN A A, CONRADSEN K, SIMPSON J J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64(1): 1-19.
REYNOLDS D A. Gaussian mixture models[J]. Encyclopedia of Biometrics, 2009(741): 659-663.
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Vision and Pattern Recognition, 2014, arXiv preprint arXiv:1409.1556.
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
HUANG G, LIU Z, VAN DER MAATEN L. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1-9.
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构