1.白城师范学院计算机科学学院,吉林 白城137000
2.白城师范学院物理学院,吉林 白城137000
3.中山大学材料科学与工程学院,广东 广州510275
赵宇(1988年生),男;研究方向:计算机应用化学;E-mail:348529918@qq.com
高峰(1983年生),男;研究方向:物理化学;E-mail:gaof317@163.com
王佐成(1963年生),男;研究方向:计算化学;E-mail:wangzc188@163.com;(高峰、王佐成为共同通信作者)
纸质出版日期:2021-09-25,
网络出版日期:2021-04-22,
收稿日期:2020-08-11,
录用日期:2020-09-30
扫 描 看 全 文
赵宇,刘芳,柯卓锋等.水液相下两性α-Ala与Na+配合物旋光异构的理论研究[J].中山大学学报(自然科学版),2021,60(05):141-151.
ZHAO Yu,LIU Fang,KE Zhuofeng,et al.Theoretical study on the optical isomerization of amphoteric α-alanine and Na+ complexes in water-liquid phase environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(05):141-151.
赵宇,刘芳,柯卓锋等.水液相下两性α-Ala与Na+配合物旋光异构的理论研究[J].中山大学学报(自然科学版),2021,60(05):141-151. DOI: 10.13471/j.cnki.acta.snus.2020C017.
ZHAO Yu,LIU Fang,KE Zhuofeng,et al.Theoretical study on the optical isomerization of amphoteric α-alanine and Na+ complexes in water-liquid phase environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(05):141-151. DOI: 10.13471/j.cnki.acta.snus.2020C017.
采用密度泛函理论的M06-2X方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性
S
型α-丙氨酸与钠离子配合物(
S
-
α
-Ala·Na
+
)的旋光异构。研究发现:
S
-
α
-Ala·Na
+
的旋光异构有a、b和c 3个通道,a通道是两性
S
-α-Ala·Na
+
异构成中性
S
-α-Ala·Na
+
后,质子以氨基氮为桥迁移;b通道是质子只以羰基氧为桥迁移;c通道是α-氢迁移到羰基氧后,质子再从质子化氨基迁移到α-碳。势能面计算表明:隐性溶剂效应下,a通道具有优势,决速步能垒是234.8 kJ·mol
-1
;b和c通道处于劣势,具有共同的决速步能垒均267.9 kJ·mol
-1
。显性溶剂效应下,a通道变为劣势通道,决速步能垒为155.9~156.5 kJ·mol
-1
;b和c通道略具优势,决速步能垒为132.2~138.6 kJ·mol
-1
。结果表明:水液相下丙氨酸钠配合物只能以极慢的速度消旋。
The optical isomerization of amphoteric
S
-
α
-Ala·Na
+
in water-liquid phase environment was investigated by using the M06-2X method based on density functional theory and the SMD model method based on self consistent reaction field (SCRF) theory. The results showed that the optical isomerization of
S
-
α
-Ala·Na
+
has three channels a,b and c. In channel a, the proton transfers with amino nitrogen as a bridge after the isomerization of amphoteric
S
-
α
-Ala·Na
+
to neutral
S
-
α
-Ala·Na
+
. And the proton is transferred merely using carbonyl oxygen as a bridge in channel b. In channel c, the proton transfers to
α
-C from protonation amino after
α
-H is transferred to carbonyl oxygen. The potential energy surface showed that the channel a has the most advantage under the effect of recessive solvent and the energy barrier of the rate-determining step is 234.8 kJ·mol
-1
; While channel b and c had a disadvantage, they both have the common energy barrier of the rate-determining step about 267.9 kJ·mol
-1
. Under the effect of explicit solvent, channel a turned to an inferior channel, and its energy barrier of the rate-determining step is between 155.9 and 156.5 kJ·mol
-1
; channel b and c have a slight advantage and the energy barrier of the rate-determining step is between 132.2 and 138.6 kJ·mol
-1
. The results showed that
α
-alanineNa(I) complex could only racemize at an extremely slow speed in the water-liquid environment.
α-丙氨酸钠离子旋光异构密度泛函理论自洽反应场理论过渡态能垒
α-alanine(α-Ala)sodium ion (Na+)optical isomerizationdensity functional theoryself consistent reaction field theorytransition stateenergy barrier
FISHER G H, D′ANIELLO A, VETERE A,et al. Free D-aspartate and D-alanine in normal and Alzheimer brain [J]. Brain Research Bulletin, 1991, 26(6): 983-985. DOI:10.1016/0361-9230(91)90266-Mhttp://dx.doi.org/10.1016/0361-9230(91)90266-M.
THOMPSON R J, BOUWER H G, PORTNOY D A, et al. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth [J]. Infection and Immunity, 1998, 66(8): 3552-3561. DOI: 10.1111/ j.1574-695X.1998.tb01180http://dx.doi.org/10.1111/j.1574-695X.1998.tb01180.
ALVAREZ L, ESPAILLAT A, HERMOSO J A, et al. Peptidoglycan remodeling by the coordinated action of multispecific enzymes[J]. Microbial Drug Resist, 2014, 20(3): 190-198. DOI:10.1089/mdr.2014.0047http://dx.doi.org/10.1089/mdr.2014.0047.
郭笑,杜信眉,程磊. D-丙氨酸在细菌中的功能和代谢研究进展[J]. 口腔疾病防治,2019,27(4):264-266. DOI:10.12016/j.issn.2096-1456.2019.04.012http://dx.doi.org/10.12016/j.issn.2096-1456.2019.04.012.
GUO X, DU X M, CHENG L, et al. Research progress on the function and metabolism of D-alanine in bacteria[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2019,27(4):264-266. DOI: 10. 12016/j.issn.2096-1456.2019.04.012http://dx.doi.org/10.12016/j.issn.2096-1456.2019.04.012.
叶青, 李勤, 吕庆. 食品中钠离子含量检测方法综述[J]. 食品安全质量检测学报,2016,7(11): 4576-4580.DOI: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.061http://dx.doi.org/10.19812/j.cnki.jfsq11-5956/ts.2016.11.061.
YE Q,LI Q,LV Q. Determination methods of sodium ion in food[J]. Journal of Food Safety and Quality,2016,7(11):4576-4580. DOI:10.19812/j.cnki.jfsq11-5956/ts.2016.11.061http://dx.doi.org/10.19812/j.cnki.jfsq11-5956/ts.2016.11.061.
薛荣涛,李翠芹,何腊平. 复合氨基酸螯合钙的研究进展[J]. 食品工业科技,2014,35(21):390-394. DOI:10.13386/j.issn1002-0306.2014.21.076http://dx.doi.org/10.13386/j.issn1002-0306.2014.21.076.
XUE R T,LI C Q,HE L P. Research progress in compound amino acid chelated calcium[J]. Science and Technology of Food Industry,2014,35(21): 390-394. DOI:10.13386/j.issn1002-0306. 2014. 21. 076http://dx.doi.org/10.13386/j.issn1002-0306.2014.21.076.
杜俊,张俊豪,方宾. 氨基酸配合物的性质及应用[J]. 化学进展,2003,15(4): 288-294. DOI: CNKI:SUN: HXJZ.0.2003-04-004http://dx.doi.org/CNKI:SUN:HXJZ.0.2003-04-004.
DU J, ZHANG J H, FANG B. Properties and applications of amino-acid complex[J]. Progress in Chemistry,2003,15(4): 288-294.DOI: CNKI:SUN:HXJZ.0.2003-04-004http://dx.doi.org/CNKI:SUN:HXJZ.0.2003-04-004.
樊耀亭,朱伯仲,李娅,等. 含稀土的混合氨基酸配合态多元微肥的研制及应用[J]. 稀土,1997(4): 59-61. DOI: 10.16533/j.cnki.15-1099/tf.1997.04.015http://dx.doi.org/10.16533/j.cnki.15-1099/tf.1997.04.015.
FAN Y T, ZHU B Z, LI Y, et al. Preparation and application of mixed amino acid fertilizer containing care earth [J]. Chinese Rare Earths, 1997(4): 59-61. DOI: 10.16533/j.cnki.15-1099/tf.1997. 04.015http://dx.doi.org/10.16533/j.cnki.15-1099/tf.1997.04.015.
吴菁. 复合氨基酸-铁、锌、铜配合物的合成及其抗肿瘤抗菌生物活性研究[J].中国当代医药,2018,25(30):30-32. DOI:SUN: ZGUD.0.2018-30-009http://dx.doi.org/SUN:ZGUD.0.2018-30-009.
WU J. Synthesis of compound amino acid iron,zinc and copper complexes and their antitumor and the study on the antibacterial activities[J]. China Modern Medicine, 2018, 25(30): 30-32. DOI:SUN: ZGUD. 0.2018-30-009http://dx.doi.org/SUN:ZGUD.0.2018-30-009.
WANG Z C, LIU Y F, YAN H Y, et al.Theoretical investigations of the chiral transition of α-Amino acid confined in various sized armchair Boron-Nitride nanotubes [J].The Journal of Physical Chemistry A,2017, 121(8): 1833-1840. DOI:10.1021/acs.jpca.7b00079http://dx.doi.org/10.1021/acs.jpca.7b00079.
徐锐英,马宏源,姜春旭,等.水液相环境 α-丙氨酸两性离子的手性对映体转变机理[J].中山大学学报(自然科学版),2019,58(6):25-34. DOI: 10.13471/j.cnki.acta.snus.2019.06.004http://dx.doi.org/10.13471/j.cnki.acta.snus.2019.06.004.
XU R Y, MA H Y, JIANG C X, et al.Mechanism of chiral enantiomer transition of α-Alanine zwitterion in water/liquid phase environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019,58(6):25-34. DOI: 10.13471/j.cnki.acta.snus.2019.06.004http://dx.doi.org/10.13471/j.cnki.acta.snus.2019.06.004.
杨晓翠,高峰,佟华,等. 水液相环境下α-丙氨酸分子的手性转变及氢氧根和羟基自由基的作 用[J].武汉大学学报(理学版), 2019, 65(1):19-29. DOI:10.14188/j.1671-8836.2019.01.003http://dx.doi.org/10.14188/j.1671-8836.2019.01.003.
YANG X C, GAO F, TONG H, et al. Optical isomerization of α-alanine molecules and roles of hydroxyl ions and hydroxyl radicals in water liquid phase environment [J]. Journal of Wuhan University(Science Edition) , 2019, 65(1):19-29. DOI:10.14188/j.1671-8836.2019.01.003http://dx.doi.org/10.14188/j.1671-8836.2019.01.003.
李冰,潘宇,徐锐英,等.气相环境下Cu2+催化α-Ala手性对映体转变的机理[J].武汉大学学报(理学版), 2019, 65(6): 621-628. DOI: org/10.14188/j.1671-8836.2019.06.013http://dx.doi.org/org/10.14188/j.1671-8836.2019.06.013.
LI B, PAN Y, XV R Y, et al. Mechanism of chiral enantiomer transition of α-Ala catalyzed by Cu2+ in gas phase environment[J]. Journal of Wuhan University(Science Edition), 2019, 65(6): 621-628. DOI: org/ 10.14188/j.1671-8836.2019.06.013http://dx.doi.org/org/10.14188/j.1671-8836.2019.06.013.
徐锐英,刘芳,马宏源,等. 气相丙氨酸Ca2+配合物的手性转变机理及水分子的催化作用[J]. 浙江大学学报(理学版), 2020, 47(5): 630-641. DOI:10.3785/j.issn.1008-9497.2020.05.015http://dx.doi.org/10.3785/j.issn.1008-9497.2020.05.015.
XÜ R Y, LIU F, MA H Y, et al. Chiral transition mechanism of Ala and Ca2+ complexes in gas phase and catalysis of water molecules[J]. Journal of Zhejiang University(Science Edition), 2020, 47(5): 630-641. DOI:10.3785/j.issn.1008-9497.2020.05.015http://dx.doi.org/10.3785/j.issn.1008-9497.2020.05.015.
李冰,刘芳,徐锐英,等. 气相环境下Na+催化丙氨酸分子手性转变的机理[J]. 复旦学报(自然科学版), 2020, 59(4): 495-504. DOI:10.15943/j.cnki.fdxb-jns.2020.04.015http://dx.doi.org/10.15943/j.cnki.fdxb-jns.2020.04.015.
LI B, LIU F, XÜ R Y, et al. Mechanism of chiral transition of alanine catalyzed by Na+ in gas phase[J]. Journal of Fudan University (Natural Sciences), 2020, 59(4) : 495-504. DOI:10.15943/j.cnki. fdxb-jns. 2020. 04.015http://dx.doi.org/10.15943/j.cnki.fdxb-jns.2020.04.015.
车立新,张雪娇,刘芳,等.气相α-丙氨酸二价锌配合物手性转变的密度泛函理论研究[J].云南大学学报(自然科学版),2020,42(4):966-976. DOI: 10.7540/j.ynu.20200038http://dx.doi.org/10.7540/j.ynu.20200038.
CHE L X, ZHANG X J, LIU F, et al. Chiral transition mechanism of Zn(Ⅱ) and α-Ala complexes in gas phase: A density functional theory study[J]. Journal of Yunnan University (Natural Sciences), 2020,42(4):966-976. DOI: 10.7540/j.ynu.20200038http://dx.doi.org/10.7540/j.ynu.20200038.
张雪娇,李冰,姜春旭,等.气相环境下丙氨酸Mn(Ⅱ)配合物的手性转变机理[J].武汉大学学报(理学版), 2020, 66(4):345-355. DOI: 10.14188/j.1671-8836.2020.0024http://dx.doi.org/10.14188/j.1671-8836.2020.0024.
ZHANG X J, LI B, JIANG C X, et al. Chiral transition mechanism of Mn(Ⅱ) and Ala complexes in gas phase environment[J]. Journal of Wuhan University(Science Edition), 2020, 66(4):345-355. DOI: 10.14188/j. 1671-8836.2020.0024http://dx.doi.org/10.14188/j.1671-8836.2020.0024.
张雪娇,刘芳,吴梓昊,等.丙氨酸Mg2+配合物的手性转变机理水分子(簇)的作用及水溶剂效应[J]. 中山大学学报(自然科学版),2020, 59(5):156-168. DOI:10.13471/j.cnki.acta.snus.2020.02.02.2020C003http://dx.doi.org/10.13471/j.cnki.acta.snus.2020.02.02.2020C003.
ZHANG X J, LIU F, WU Z H, et al. Chiral transition mechanism of Mg2+ and Ala complexes and effect of water molecules (clusters) and water solvents [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(5): 156-168. DOI:10.13471/j.cnki.acta.snus.2020.02.02.2020C003http://dx.doi.org/10.13471/j.cnki.acta.snus.2020.02.02.2020C003.
刘芳,马宏源,潘宇,等.气相环境下K+催化丙氨酸分子手性对映体转变的机理[J]. 厦门大学学报(自然科学版), 2020, 59(6): 897-903. DOI:10.6043/j.issn.0438-0479.201910017http://dx.doi.org/10.6043/j.issn.0438-0479.201910017.
LIU F, MA H Y, PAN Y, et al. Mechanism of alanine chiral enantiomer transition catalyzed by K+ in gas phase[J]. Journal of Xiamen University (Natural Sciences), 2020, 59(6): 897-903. DOI:10.6043/j.issn. 0438- 0479.201910017http://dx.doi.org/10.6043/j.issn.0438-0479.201910017.
姜春旭,陈凤清,张雪娇,等.基于密度泛函理论的气相下α-Ala·Fe2+配合物手性转变机理[J]. 复旦学报(自然科学版),2020,59(5):690-701. DOI:10.15943/j.cnki.fdxb-jns.2020.05.014http://dx.doi.org/10.15943/j.cnki.fdxb-jns.2020.05.014.
JIANG C X, CHEN F Q, ZHANG X J, et al. Chiral transition mechanism of Fe2+ and α-Ala complexes in gas phase based on density functional theory[J]. Journal of Fudan University (Natural Sciences),2020,59(5):690-701.DOI:10.15943/j.cnki.fdxb-jns.2020.05.014http://dx.doi.org/10.15943/j.cnki.fdxb-jns.2020.05.014.
苏丹,孙玉锋,郝成欣,等.水液相环境下α-丙氨酸二价锌配合物的手性转变机理[J].中山大学学报(自然科学版),2021,60(4):50-59. DOI: 10.13471/j.cnki.acta.snus.2020.04.29.2020C011http://dx.doi.org/10.13471/j.cnki.acta.snus.2020.04.29.2020C011.
SU D, SUN Y F, HAO C X, et al. Chiral transition mechanism of α-alanine divalent zinc complex in water/liquid phase environment[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(4):50-59. DOI: 10.13471/j.cnki.acta.snus.2020.04.29.2020C011http://dx.doi.org/10.13471/j.cnki.acta.snus.2020.04.29.2020C011.
刘军,姜春旭,胡燠铭,等.水液相环境下两性α-丙氨酸Fe(Ⅱ)配合物的构型反转[J].武汉大学学报(理学版),2021,67(4):375-385. DOI: 10.14188/j.1671-8836.2020.0132http://dx.doi.org/10.14188/j.1671-8836.2020.0132.
LIU J,JIANG C X ,HU Y M, et al.Configuration inversion of amphoteric α-alanine Fe(Ⅱ)complex in waterliquid phase environment [J]. Journal of Wuhan University (Science Edition),2021,67(4):375-385. DOI: 10.14188/j.1671-8836. 2020.0132http://dx.doi.org/10.14188/j.1671-8836.2020.0132.
WANG Y, VERMA P, ZHANG L J, et al. M06-SX screened-exchange density functional for chemistry and solid-state physics[J]. Proc Natl Acad Sci U S A, 2020, 117(5): 2294-2301.
GARRETT B C, TRUHLAR D G. Criterion of minimum state density in the transition state theory of bimolecular reactions[J]. The Journal of Chemical Physics, 1979, 70(4): 1593-1598.
HRATCHIAN H P, SCHLEGEL H B. Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method[J]. J Chem Theory and Comput, 2005(1): 61-69. DOI: 10.1021/ct0499783http://dx.doi.org/10.1021/ct0499783.
ALEKSANDR V, MARENICE C J, CRAME R, et al. Universal slovation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions [J]. The Journal of Physical Chemistry B, 2009, 113(18): 6378-6396. DOI: 10.1021/ jp810292nhttp://dx.doi.org/10.1021/jp810292n.
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 revision C.01[CP]. Pittsburgh USA: Gaussian Inc, 2019.
GORB L,LESZCZYNSKI J. Intramolecular proton transfer in Mono- and dihydrated tautomers of guanine: An ab initio post hartree-fock study[J]. J Am Chem Soc,1998,120:5024-5032.DOI:10.1021/ ja972017whttp://dx.doi.org/10.1021/ja972017w.
0
浏览量
0
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构