中山大学航空航天学院,广东 广州 510006
黄熙文(1994年生),男;研究方向:非线性动力学;E-mail:huangxw63@mail2.sysu.edu.cn
刘广(1992年生),男;研究方向:非线性振动、参数识别等;E-mail:liug36@mail.sysu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-12,
收稿日期:2020-12-26,
录用日期:2020-03-11
扫 描 看 全 文
黄熙文,陈衍茂,李文龙等.翼型气动弹性系统的三种状态方程的等价性[J].中山大学学报(自然科学版),2022,61(03):171-180.
HUANG Xiwen,CHEN Yanmao,LI Wenlong,et al.Equivalence of three state space models for airfoil aeroelastic systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):171-180.
黄熙文,陈衍茂,李文龙等.翼型气动弹性系统的三种状态方程的等价性[J].中山大学学报(自然科学版),2022,61(03):171-180. DOI: 10.13471/j.cnki.acta.snus.2020B155.
HUANG Xiwen,CHEN Yanmao,LI Wenlong,et al.Equivalence of three state space models for airfoil aeroelastic systems[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):171-180. DOI: 10.13471/j.cnki.acta.snus.2020B155.
作用于翼型气动弹性系统上的非定常Theodorsen空气动力中含有卷积积分,此积分算子的存在使得直接模拟气动弹性系统的响应是一项困难的工作。目前,已有三种不同的方式可以处理方程中的积分算子,使得化简后的方程仅含微分算子,但三种模型之间的等价关系仍然研究较少。文章将从数学上证明这三种化简后的模型是等价的,且分别采用龙格-库塔法和精细积分法对其进行验证。数值结果表明,三种模型无论是瞬态还是稳态响应,都是完全相同的。
It is difficult to simulate the response of aeroelastic system directly because of the convolution integral in the unsteady Theodorsen aerodynamic force. To the best of our knowledge, there are three different ways to deal with the integral operator, so that the simplified equation only contains the differential operators. Despite huge applications of these models, the equivalence relationship among them is still less studied. In this paper, we will prove mathematically proved that the three simplified models are equivalent, and verify them by Runge-Kutta method and precise integration method, respectively. Numerical results show that these models exhibit exactly the same solutions for both transient and steady responses.
翼型气动弹性系统状态空间模型等效性
airfoilaeroelastic systemstate space modelequivalence
LEE B H K, PRICE S J, WONG Y S. Nonlinear aeroelastic analysis of airfoils: Bifurcation and chaos [J]. Progress in Aerospace Science, 1999, 35(3): 205-344.
陈衍茂, 刘继科. 非线性颤振极限环稳定性判别的复数正规形法[J]. 航空动力学报, 2007, 22(4): 614-618.
刘济科, 高磊. 机翼非线性颤振的分叉点研究[J]. 中山大学学报(自然科学版), 1998, 37(3): 29-32.
LEUNG A Y T, GUO Z J. Residue harmonic balance for two-degree-of-freedom airfoils with cubic structural nonlinearity [J]. AIAA Journal, 2011, 49(12): 2607-2611.
DAI H H, YUE X K, YUAN J P, et al. A time domain collocation method for studying the aeroelasticity of a two dimensional airfoil with a structural nonlinearity [J]. Journal of Computational Physics, 2014, 270: 214-237.
LIU L, DOWELL E H. The secondary bifurcation of an aeroelastic airfoil motion: Effect of high harmonics [J]. Nonlinear Dynamics, 2004, 37(1): 31-49.
刘广, 刘济科, 陈衍茂. 基于Wilson-θ和Newmark-β法的非线性动力学方程改进算法[J]. 计算力学学报, 2017, 34(4):433-439.
LIU G, WANG L, LUO W L, et al. Parameter identification of fractional order system using enhanced response sensitivity approach [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 67: 492-505.
LEE B H K, GONG L, WONG Y S. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity [J]. Journal of Fluids and Structures, 1997, 11(3): 225-246.
TRICKEY S T. Global and local dynamics of an aeroelastic system with a control surface freeplay nonlinearity [D]. North Carolina: Duke University, 2000.
COLLER B D, CHAMARA P A. Structural non-linearities and the nature of the classic flutter instability [J]. Journal of Sound and Vibration, 2004, 277(4/5): 711-739.
LIU G, LU Z R, WANG L, et al. A new semi-analytical technique for nonlinear systems based on response sensitivity analysis[J]. Nonlinear Dynamics, 2021, 103(2): 1529-1551.
CHUNG K W, HE Y B, LEE B H K. Bifurcation analysis of a two-degree-of-freedom aeroelastic system with hysteresis structural nonlinearity by a perturbation-incremental method [J]. Journal of Sound and Vibration, 2009, 320(1/2): 163-183.
LIU G, WANG L, LIU J K, et al. Identification of an airfoil-store system with cubic nonlinearity via enhanced response sensitivity approach [J]. AIAA Journal, 2018, 56(11): 4977-4987.
LIU G, LV Z R, LIU J K, et al. Quasi-periodic aeroelastic response analysis of an airfoil with external store by incremental harmonic balance method [J]. International Journal of Non-Linear Mechanics, 2018, 100: 10-19.
TRICKEY S T, VIRGIN L N, DOWELL E H. The stability of limit-cycle oscillations in a nonlinear aeroelastic system [J]. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2025): 2203-2226.
LI D, GUO S, XIANG J. Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities [J]. Journal of Sound and Vibration, 2010, 329(22): 4756-4771.
VASCONCELLOS R, ABDELKEFI A, MARQUES F D, et al. Representation and analysis of control surface freeplay nonlinearity [J]. Journal of Fluids and Structures, 2012, 31: 79-91.
CHAMARA P A, COLLER B D. A study of double flutter [J]. Journal of Fluids and Structures, 2004, 19(7): 863-879.
陈香,杨志军,范志强,等. 超音速二元翼极限环颤振的高次线性化分析 [J]. 科学技术与工程, 2009, 9(1): 175-179.
ALIGHANBARI H, HASHEMI S M. Derivation of odes and bifurcation analysis of a two-DOF airfoil subjected to unsteady incompressible flow [J]. International Journal of Aerospace Engineering, 2009, 7:D248930.
DAI H, YUE X, XIE D, et al. Chaos and chaotic transients in an aeroelastic system [J]. Journal of Sound and Vibration, 2014, 333(26): 7267-7285.
CHEN Y M, LIU J K. Nonlinear aeroelastic analysis of an airfoil-store system with a freeplay by precise integration method [J]. Journal of Fluids and Structures, 2014, 46: 149-164.
CONNER M D, TANG D M, DOWELL E H, et al. Nonlinear behavior of a typical airfoil section with control surface freeplay: A numerical and experimental study [J]. Journal of Fluids and Structures, 1997, 11(1): 89-109.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构