中山大学航空航天学院,广东 广州 510006
谭颖轩(1996年生),女;研究方向:结构损伤识别;E-mail: tanyx9@mail2.sysu.edu.cn
吕中荣(1975年生),男;研究方向:结构损伤识别、群智能计算;E-mail:lvzhr@mail.sysu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-20,
收稿日期:2020-11-27,
录用日期:2020-12-29
扫 描 看 全 文
谭颖轩,陈衍茂,汪利等.基于模态修正策略和稀疏正则化的损伤识别[J].中山大学学报(自然科学版),2022,61(03):116-122.
TAN Yingxuan,CHEN Yanmao,WANG Li,et al.Damage identification using modal changes correction strategy and sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):116-122.
谭颖轩,陈衍茂,汪利等.基于模态修正策略和稀疏正则化的损伤识别[J].中山大学学报(自然科学版),2022,61(03):116-122. DOI: 10.13471/j.cnki.acta.snus.2020B142.
TAN Yingxuan,CHEN Yanmao,WANG Li,et al.Damage identification using modal changes correction strategy and sparse regularization[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):116-122. DOI: 10.13471/j.cnki.acta.snus.2020B142.
结构损伤识别问题中,剪切层结构简化带来的模型误差会对识别结果带来不可预料的影响。为了尽可能地减少模型误差的影响,提出了模态改变修正策略。并结合损伤位置的稀疏性,引入稀疏正则化以解决损伤识别反问题的不适定性。此外,为了使稀疏正则化引起的额外计算成本尽可能小,提出了一种解耦的损伤识别目标函数,并用交替优化方法进行求解。文章通过识别结构健康监测标准模型成功验证了所提方法的正确性,并且展示出模态改变修正策略的显著优点:仅需要得知剪切层结构的层数即可利用测量的模态数据进行损伤识别,适用于难以获取实际质量与刚度的真实剪切层建筑的损伤识别。
For structural damage identification, model errors brought by the simplification of shear structure will often have bad effects on the result. To alleviate the errors, the modal measurement changes correction strategy is proposed. And because of the sparsity of damage itself, sparse regularization is invoked to solve the ill-posedness of damage identification that is an inverse problem. Moreover, in order to reduce the extra computational cost caused by sparse regularization, a new objective function is established accordingly, and the alternate optimization method is used to get the solution. The accuracy of the identification method present here are verified by identifying the SHM Benchmark problem. Additionally, a significant advantage of the modal measurement changes correction strategy has been shown.That is, only the number of floors is required to detect damage, which extremely suitable for the damage identification of real multi-story buildings whose actual mass and stiffness are hard to obtain.
损伤识别剪切层结构模态改变量稀疏正则化交替优化法
damage identificationshear structuremodal measurement changessparse regularizationalternate optimization method
FAN W, QIAO P. Vibration-based damage identification methods: A review and comparative study[J]. Structural Health Monitoring, 2011, 10(1): 83-111.
朱宏平,余璟,张俊兵.结构损伤动力检测与健康监测研究现状与展望[J].工程力学,2011, 28(2):1-11.
李洪泉,欧进萍.剪切型钢筋混凝土结构的地震损伤识别方法[J].哈尔滨建筑大学学报,1996, 29 (2):8-12.
姜增国,瞿伟廉,闵志华.基于小波包分析的结构损伤定位方法[J].武汉理工大学学报,2006, 28(11):94-97.
MORITA K, TESHIGAWARA M, HAMAMOTO T. Detection and estimation of damage to steel frames through shaking table tests[J]. Structural Control and Health Monitoring ,2005,12(3/4): 357-380.
ZHOU X Q, XIA Y, WENG S. L1 regularization approach to structural damage detection using frequency data[J]. Structural Health Monitoring, 2015, 14(6): 571-582.
HAO H, XIA Y.Vibration-based damage detection of structures by genetic algorithm[J]. Journal of Computing in Civil Engineering, 2002, 16(3): 222-229.
WANG X, HU N, FUKUNAGA H, et al. Structural damage identification using static test data and changes in frequencies[J].Engineering Structures,2001,23(6): 610-621.
WANG L, LU Z R. Sensitivity-free damage identification based on incomplete modal data, sparse regularization and alternating minimization approach[J]. Mechanical Systems and Signal Processing, 2019,120: 43-68.
WEBER B, PAULTRE P, PROULX J. Structural damage detection using nonlinear parameter identification with Tikhonov regularization[J].Structural Control and Health Monitoring, 2007, 14(3): 406-427.
ZHANG C D, XU Y L. Comparative studies on damage identification with Tikhonov regularization and sparse regularization[J]. Structural Control and Health Monitoring, 2016, 23(3): 560-579.
WANG Y, HAO H. Damage identification scheme based on compressive sensing[J]. Journal of Computing in Civil Engineering, 2015, 29(2):04014037.
ZHOU S, BAO Y, LI H, et al. Structural damage identification based on substructure sensitivity and l1 sparse regularization[C]// Proceedings of SPIE, 2013.
BECK A. On the convergence of alternating minimization for convex programming with applications to iteratively reweighted least squares and decomposition schemes[J]. SIAM Journal on Optimization, 2015, 25(1): 185-209.
LU Z R, YIN Z, ZHOU J, et al. A simple and effective measurement changes correction strategy for damage identification with aleatoric and epistemic model errors[J]. Structural Health Monitoring, 2020,20(3): 1-25.
CANDES E J, WAKIN M B, BOYD S P. Enhancing sparsity by reweighted L1 minimization[J]. Journal of Fourier Analysis and Applications, 2008, 14(5/6): 877-905.
JOHNSON E A, LAM H F, KATAFYGIOTIS L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics, 2004, 130(1): 3-15.
CAICEDO J M, DYKE S J, JOHNSON E A. Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data[J].Journal of Engineering Mechanics, 2004, 130(1): 49-60.
TRIFUNAC M D, IVANOVIC S S, TODOROVSKA M I. Instrumented 7-storey reinforced concrete building in Van Nuys, California: Description of the damage from the 1994 Northridge Earthquake and strong motion data[R]. Report CE 99, 1999:2.
WANG J F, LIN C C, YEN S M. A story damage index of seismically-excited buildings based on modal frequency and mode shape[J]. Engineering Structures, 2007, 29:2143-2157.
0
浏览量
0
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构