中山大学航空航天学院应用力学与工程系,广东 深圳 518107
周宇(1995年生),男;研究方向:时间有限元结构动力分析;E-mail:zhouy243@mail2.sysu.edu.cn
刘祚秋(1965年生),男;研究方向:计算力学;E-mail:eeslzq@mail.sysu.edu.cn
纸质出版日期:2022-05-25,
网络出版日期:2021-07-12,
收稿日期:2020-09-17,
录用日期:2020-11-02
扫 描 看 全 文
周宇,汪利,刘祚秋.时间有限元的算法稳定性与周期延长率分析[J].中山大学学报(自然科学版),2022,61(03):110-115.
ZHOU Yu,WANG Li,LIU Zuoqiu.Analysis of algorithm stability and period elongation of time finite element[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):110-115.
周宇,汪利,刘祚秋.时间有限元的算法稳定性与周期延长率分析[J].中山大学学报(自然科学版),2022,61(03):110-115. DOI: 10.13471/j.cnki.acta.snus.2020B096.
ZHOU Yu,WANG Li,LIU Zuoqiu.Analysis of algorithm stability and period elongation of time finite element[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(03):110-115. DOI: 10.13471/j.cnki.acta.snus.2020B096.
时间有限元法因其严格的先验误差界、计算误差不随时间扩散等特性而被应用于结构动力求解。文章分析了时间有限元法的算法稳定性和周期延长率。算法稳定性由时间有限元的传递矩阵的谱半径控制,当谱半径小于1时,时间有限元具有长时间的稳定性。而周期延长率作为计算周期与理论周期的相对误差,其值越大,意味着长时间响应的不可预测性越高。分析结果表明,对于有阻尼系统(阻尼比大于0.05%),当时间步长小于周期时,算法的谱半径小于1;而对于无阻尼系统(阻尼比小于0.05%),当时间步长小于0.3倍周期时,算法呈现条件稳定。另一方面,算法的周期延长率几乎为0,意味着时间有限元的计算结果不会发生周期漂移。最后,将时间有限元应用于梁的动力分析,验证了算法在精度上的优势。
The time finite element method is used to solve structural dynamics because of its strict prior error bounds and the characteristics of calculation error do not spreading over time. This paper mainly analyzes the algorithm stability and period elongation of the time finite element method. The stability of the algorithm is controlled by the spectral radius of the time finite element transfer matrix. When the spectral radius is less than 1, the time finite element has long-term stability. The period elongation is the relative error between the calculation period and the theoretical period. The larger the value, the higher the unpredictability of the long-term response. The analysis results show that for a damped system(damping ratio is greater than 0.05%), when the time step is less than the period, the spectral radius of the algorithm is less than 1. For undamped systems(or damping ratio is less than 0.05%), when the time step is less than 0.3 times of the period, the algorithm is conditionally stable. On the other hand, the period elongation of the algorithm is almost 0, which means that the calculation of time finite element will not cause period drift. Finally, the application of the time finite element to the dynamic analysis of the beam verifies the advantages of the algorithm in accuracy.
时间有限元稳定性分析周期延长率
time finite elementanalysis of stabilityperiod elongation
杨昌棋,刘成群. 求解动力响应的时间有限元法[J]. 振动与冲击, 1987(4):73-79.
于开平,邹经湘. 时间域有限元法[J]. 力学进展, 1998,28(4):461-468.
HULBERT G M. Time finite element methods for structural dynamics [J]. Int J Numer Methods Eng, 1992,33:307-331.
LIX D, WIBERGN E. Structural dynamic analysis by a time-discontinuous Galerkin finite element method [J]. Int J Numer Methods Eng, 1996,39:2131-2152.
FRENCHD A, SCHAEFFER J W. Continuous finite element methods which preserve energy properties for nonlinear problems [J]. Appl Math Comput, 1991,39:271-295.
FRENCHD A, PETERSONT E. A continuous space-time finite element method for the wave equation [J]. Math Comput, 1996,65:491-506.
袁晓彬,董江峰,邱慈长,等. 结构动力响应的时间有限元全域算法[J]. 应用力学学报, 2010,27(3):579-583.
许伟,袁晓彬,谭莲飞,等. 基于五次Hermite插值的时间有限元全域算法求解结构动力响应[J]. 四川大学学报(工程科学版), 2011,43(3):39-43.
WANG L, ZHONG H Z . A time finite element method for structural dynamics [J]. Appl Math Model, 2017,41:445-461.
张方,朱德懋,张福祥. 动载荷识别的时间有限元模型理论及其应用[J]. 振动与冲击, 1998,17(2):1-4.
荣吉利,李瑞英. 水轮发电机轴系横向振动响应的时间有限元法[J]. 北京理工大学学报, 2001,21(5):553-557.
隋永枫,高强,钟万勰. 陀螺系统时间有限元方法[J]. 振动与冲击, 2012,31(13):95-98.
姜燕,郭强,赵波. 铣削稳定性预测的时间有限元法[J]. 河南大学学报(自然科学版), 2016,35(5):672-676.
陈玲莉. 工程结构动力分析数值方法[M]. 西安:西安交通大学出版社, 2006.
刘祥庆,刘晶波,丁桦. 时域逐步积分算法稳定性与精度的对比分析[J]. 岩石力学与工程学报, 2007,26(增刊1):3000-3008.
刘洋,田石柱. 基于随机子空间的结构参数识别及振动台试验验证[J]. 地震工程与工程振动, 2004,24(2):111-117.
郭利荣. 基于奇异值分解的强单频干扰自动识别与消除[J]. 江汉石油职工大学学报, 2019,32(4):11-13.
0
浏览量
2
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构