中山大学智能工程学院 / 广东省智能交通系统重点实验室,广东 广州 510006
陈略(1994年生),女;研究方向:数据挖掘与分析;E-mail:394371296@qq.com
蔡铭(1977年生),男;研究方向:数据挖掘与分析;E-mail:caiming@mail.sysu.edu.cn
纸质出版日期:2022-03-25,
网络出版日期:2021-05-21,
收稿日期:2020-03-27,
录用日期:2020-04-14
扫 描 看 全 文
陈略,熊宸,蔡铭.基于手机信令轨迹点识别的职住地综合决策算法[J].中山大学学报(自然科学版),2022,61(02):106-116.
CHEN Lue,XIONG Chen,CAI Ming.A comprehensive decision-making algorithm of residence and workplace based on the identification of cellular signaling track points[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):106-116.
陈略,熊宸,蔡铭.基于手机信令轨迹点识别的职住地综合决策算法[J].中山大学学报(自然科学版),2022,61(02):106-116. DOI: 10.13471/j.cnki.acta.snus.2020B027.
CHEN Lue,XIONG Chen,CAI Ming.A comprehensive decision-making algorithm of residence and workplace based on the identification of cellular signaling track points[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):106-116. DOI: 10.13471/j.cnki.acta.snus.2020B027.
由于手机信令存在稀疏性和空间不确定性等特点,给职住地识别带来一定难度;同时,当前的手机信令职住地识别算法对于影响识别结果的关键要素,如时间规则和空间聚合距离等的设置存在依据不足且有效性未知等问题。针对以上难点,提出了一种基于手机信令轨迹点识别的职住地综合决策算法。通过轨迹点识别消除了手机信令的空间不确定性,有效界定了停留区域的时空边界。在停留点识别的基础上,提取各时段中停留点的分布特征,计算时段信息熵,从而度量时段属于职住时段的可能性,对时段赋权值。通过对任意语义停留点到达和离去时间轴离散化,组合语义停留点的停留时段,并通过时段权值反映停留时段特征。以语义停留点的停留时段和停留时长为特征构建职住地综合决策矩阵,识别可能度最大的语义停留点作为职住地,并采用带有移动停留标签的信令数据验证算法的有效性。
Due to the characteristics of cellular signaling, such as sparsity and spatial uncertainty, it is difficult to identify the location of workplace and residence. At the same time, the current cellular signaling residence and workplace identification algorithm is an insufficient basis and unknown effectiveness for the key elements affecting the identification results, such as time rules and spatial aggregation distance. In view of the above difficulties, this paper proposes a comprehensive decision-making algorithm based on celluar signaling track point identification, which eliminates the spatial uncertainty of mobile signaling and effectively defines the space-time boundary of the stay area. Based on the recognition of stay points, the distribution characteristics of stay points in each period are extracted, and the information entropy of each period is calculated to measure the possibility that the period belongs to the residence and workplace period, and the weighted value of the period is given in this paper. By discretizing the arrival and departure time axis of any semantic stay point, the stay time slot of semantic stay point is combined, and the characteristics of stay time slot are reflected by the time slot weight. Based on the characteristics of the stay time slot and stay time, a comprehensive decision matrix of residence and workplace is constructed to identify the most likely semantic stay point as the residence and workplace, and the cellular signaling with stay tag is used to verify the effectiveness of the algorithm.
手机信令轨迹点识别信息熵职住地决策矩阵
cellular signalingidentification of cellular signaling track pointsinformation entropyresidence and workplacedecision matrix
张天然.基于手机信令数据的上海市域职住空间分析[J]. 城市交通, 2016(1):15-23.
丁亮,钮心毅,宋小冬.上海中心城就业中心体系测度—基于手机信令数据的研究[J].地理学报, 2016, 71(3):484-499.
许宁, 尹凌, 胡金星. 从大规模短期规则采样的手机定位数据中识别居民职住地[J]. 武汉大学学报(信息科学版), 2014, 39(6):750-756.
吴子啸. 基于手机数据的出行链推演算法[J].城市交通, 2019(3):11-18.
GONZÁLEZ M C, HIDALGO C A, BARABÁSI A L.Understanding individual human mobility patterns[J].Nature, 2008,453:779-782.
CALABRESE F, COLONNA M ,LOVISOLO P ,et al.Real-Time urban monitoring using cell phones: a case study in rome[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1):141-151.
宋少飞, 李玮峰, 杨东援. 基于移动通信数据的居民居住地识别方法研究[J].综合运输, 2015, 37(12):72-76.
LEE J K, HOU J C. Modeling steady-state and transient behaviors of user mobility: formulation, analysis, and application[C]//Conti M, et al. Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking & Computing. Florence: ACM, 2006:85-96.
钮心毅, 谢琛. 手机信令数据识别职住地的时空因素及其影响[J].城市交通, 2019, 17(3):19-29.
简志春. 基于多源时空数据的深圳市居民职住分布和通勤特征研究[D].武汉:武汉大学, 2018.
许宁. 基于手机定位数据的居民职住地分布特征研究[D].长沙: 中南大学, 2014.
许洪波,许金辉.基于手机信令的空间位置数据计算职住地[J]. 北京测绘,2016(6):69-71+90.
唐小勇,周涛,陆百川,等.一种基于手机信令的通勤OD训练方法[J]. 交通运输系统工程与信息,2016,16(5):64-70.
王艳涛, 魏海平, 何源浩, 等. 基于位置轨迹挖掘的城市居民职住地识别方法研究[J].测绘与空间地理信息, 2017, 40(2):113-116.
陈略,熊宸,蔡铭.一种基于手机信令的时空密度轨迹点识别算法[J]. 计算机工程,2021,47(3):83-93.
FAYYAD U M. Multi-Interval discretization of continuous-valued attributes for classification learning[C]// Proc of the Int'l Joint Conf on Artificial Intelligence. 1993: 1022-1027.
吴瑕, 唐祖锴, 祝园园, 等.近似到达时间约束下的语义轨迹频繁模式挖掘[J].软件学报,2018, 29(10):3184-3204.
张金波,赵攀.基于信息熵的区间数多属性决策方法[J].赤峰学院学报(自然科学版), 2019, 35(3):4-6.
樊治平, 宫贤斌, 张全.区间数多属性决策中决策矩阵的规范化方法[J].东北大学学报, 1999(3):104-107.
徐泽水. 模糊互补判断矩阵排序的一种算法[J]. 系统工程学报, 2001(4):311-314.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构