泰州学院数理学院,江苏 泰州 225300
管训贵(1963年生),男;研究方向:数论;E-mail:tzszgxg@126.com
纸质出版日期:2022-09-25,
网络出版日期:2022-03-10,
收稿日期:2020-12-22,
录用日期:2021-03-18
扫 描 看 全 文
管训贵.关于商高数的Jeśmanowicz猜想[J].中山大学学报(自然科学版),2022,61(05):181-190.
GUAN Xungui.The Jeśmanowicz’ conjecture on Pythagorean triples[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):181-190.
管训贵.关于商高数的Jeśmanowicz猜想[J].中山大学学报(自然科学版),2022,61(05):181-190. DOI: 10.13471/j.cnki.acta.snus.2020A075.
GUAN Xungui.The Jeśmanowicz’ conjecture on Pythagorean triples[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):181-190. DOI: 10.13471/j.cnki.acta.snus.2020A075.
研究了商高数的Jeśmanowicz猜想的正整数解问题。利用数论中的一些方法,证明了当
<math id="M1"><mo stretchy="false">(</mo><mi>a</mi><mo>
</mo><mi>b</mi><mo>
</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mtext> </mtext></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438724&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438690&type=
13.54666710
2.96333337
<math id="M2"><mo stretchy="false">(</mo><mn mathvariant="normal">2</mn><mi>k</mi><mo>+</mo><mn mathvariant="normal">1
2</mn><mi>k</mi><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo><mo>
</mo><mn mathvariant="normal">2</mn><mi>k</mi><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo><mo>+</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438769&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438740&type=
43.77266693
2.96333337
(
<math id="M3"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438822&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438780&type=
1.43933344
2.28600001
是正整数)时,对任意正整数
<math id="M4"><mi>n</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438876&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438858&type=
1.60866666
2.28600001
,丢番图方程
<math id="M5"><msup><mrow><mo stretchy="false">(</mo><mi>a</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mi>b</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mi>c</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438920&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438896&type=
26.50066566
3.21733332
在一定条件下除了
<math id="M6"><mi>x</mi><mo>=</mo><mi>y</mi><mo>=</mo><mi>z</mi><mo>=</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438942&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438913&type=
17.10266685
2.96333337
外没有其他正整数解,从而得到Jeśmanowicz猜想在该类情形下的正确性。
The positive integer solutions of the Jeśmanowicz’ conjecture on Pythagorean triples are studied. By using some methods of number theory,under some conditions,for any positive integer
<math id="M7"><mi>n</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438994&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49438961&type=
1.86266661
2.62466669
, the Diophantine equation
<math id="M8"><msup><mrow><mo stretchy="false">(</mo><mi>a</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mi>b</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mi>c</mi><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439038&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439010&type=
30.73399925
3.72533321
has no positive integer solutions other than
<math id="M9"><mi>x</mi><mo>=</mo><mi>y</mi><mo>=</mo><mi>z</mi><mo>=</mo><mn mathvariant="normal">2</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447643&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447642&type=
19.98133469
3.47133350
, when
<math id="M10"><mo stretchy="false">(</mo><mi>a</mi><mo>
</mo><mi>b</mi><mo>
</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439108&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439090&type=
14.39333248
3.47133350
<math id="M11"><mo stretchy="false">(</mo><mn mathvariant="normal">2</mn><mi>k</mi><mo>+</mo><mn mathvariant="normal">1
2</mn><mi>k</mi><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo><mo>
</mo><mn mathvariant="normal">2</mn><mi>k</mi><mo stretchy="false">(</mo><mi>k</mi><mo>+</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo><mo>+</mo><mn mathvariant="normal">1</mn><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439150&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439125&type=
51.13866425
3.47133350
, where
<math id="M12"><mi>k</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439169&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49439163&type=
1.69333339
2.62466669
is a positive integer. The result is still the confirmation of Jeśmanowicz’ conjecture.
Jeśmanowicz猜想丢番图方程正整数解同余
Jeśmanowicz’ conjectureDiophantine equationpositive integer solutioncongruence
JEŚMANOWICZ L.Several remarks on Pythagorean numbers [J].Wiad Mat, 1955,1(2):196-202.
CHENG Z,SUN C F, DU X N.On the diophantine equation <math id="M854"><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">20</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">21</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">29</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447627&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447646&type=31.665334703.21733332 [J].Math Appl,2013,26(1):129-133.
DENG M J, COHEN G L.On the conjecture of Jeśmanowicz concerning Pythagorean triples [J].Bull Aust Math Soc, 1998, 57(3): 515-524.
邓谋杰.关于丢番图方程<math id="M855"><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">13</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">84</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">85</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447630&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447648&type=31.242000583.21733332 [J].黑龙江农垦师专学报, 1999(3): 40-41.
DENG M J.A note on the Diophantine equation <math id="M856"><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mi>a</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447655&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447632&type=26.331331253.21733332 [J].Bull Aust Math Soc, 2014,89(2): 316-321.
管训贵.关于丢番图方程 <math id="M857"><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mi>a</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mi>n</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447655&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447632&type=26.331331253.21733332 (<math id="M858"><mi>c</mi><mo>=</mo><mn mathvariant="normal">181,845</mn></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447667&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447665&type=16.171333312.70933342)的解[J].东北师大学报(自然科学版),2021, 53(2): 8-13.
LE M H.A note on Jeśmanowicz’ conjecture concerning Pythagorean triples [J].Bull Aust Math Soc,1999,59(3):477-480.
马米米,吴建东.关于丢番图方程<math id="M859"><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">65</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">72</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">97</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447659&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447670&type=31.665334703.21733332 [J].南京师大学报(自然科学版), 2014,37(4): 28-30+40.
MIYAZAKI T.A remark on Jeśmanowicz’ conjecture for non-coprimality case [J].Acta Math Sin (Engl Ser), 2015,31(8): 1225-1260.
SIERPIŃSKI W.On the equation <math id="M860"><msup><mrow><mn mathvariant="normal">3</mn></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mn mathvariant="normal">4</mn></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mn mathvariant="normal">5</mn></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447678&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447661&type=14.732000352.53999996 [J].Wiad Mat, 1955,1(2): 194-195.
SUN C F,CHENG Z.A note on the Jeśmanowicz’ conjecture [J].J Math(Wuhan), 2013,33(5): 788-794.
SUN C F,CHENG Z.A conjecture of Jeśmanowicz concerning Pythagorean triples [J].Adv Math(China), 2014,43(2):267-275.
杨海,任荣珍,付瑞琴.关于商高数的Jeśmanowicz 猜想[J].数学杂志, 2017,37(3): 506-512.
YANG Z J, TANG M.On the Diophantine equation <math id="M861"><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">8</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>x</mi></mrow></msup><mo>+</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">15</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>y</mi></mrow></msup><mo>=</mo><msup><mrow><mo stretchy="false">(</mo><mn mathvariant="normal">17</mn><mi>n</mi><mo stretchy="false">)</mo></mrow><mrow><mi>z</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447675&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447672&type=29.464000703.21733332 [J].Bull Aust Math Soc, 2012,86(2):348-352.
DEM'JANENKO V A.On Jeśmanowicz’ problem for Pythagorean numbers [J].Izv Vyssh Uchebn Zaved Mat, 1965,48(5): 52-56.
管训贵.初等数论[M].2版.合肥:中国科学技术大学出版社, 2016.
MORDELL L J.Diophantine equations [M]. London:Academic Press,1969.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构