陕西师范大学数学与统计学院,陕西 西安 710119
仇思楠(1995年生),女;研究方向:算子理论;E-mail:qiusinan111@163.com
曹小红(1972年生),女;研究方向:算子理论;E-mail:xiaohongcao@snnu.edu.cn
纸质出版日期:2022-09-25,
网络出版日期:2022-03-10,
收稿日期:2020-12-01,
录用日期:2021-04-24
扫 描 看 全 文
仇思楠,曹小红.有界线性算子及其函数的Browder定理的判定[J].中山大学学报(自然科学版),2022,61(05):165-172.
QIU Sinan,CAO Xiaohong.Judgement of Browder’s theorem for bounded linear operators and their functions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):165-172.
仇思楠,曹小红.有界线性算子及其函数的Browder定理的判定[J].中山大学学报(自然科学版),2022,61(05):165-172. DOI: 10.13471/j.cnki.acta.snus.2020A070.
QIU Sinan,CAO Xiaohong.Judgement of Browder’s theorem for bounded linear operators and their functions[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):165-172. DOI: 10.13471/j.cnki.acta.snus.2020A070.
令
<math id="M1"><mi>H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441784&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441773&type=
2.28600001
2.28600001
为无限维复可分的Hilbert空间,
<math id="M2"><mi>B</mi><mfenced separators="|"><mrow><mi>H</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441761&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441751&type=
7.45066643
3.21733332
为
<math id="M3"><mi>H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441784&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441773&type=
2.28600001
2.28600001
上的有界线性算子全体。对
<math id="M4"><mi>T</mi><mo>∈</mo><mi>B</mi><mfenced separators="|"><mrow><mi>H</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441800&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441789&type=
13.03866673
3.21733332
,若
<math id="M5"><msub><mrow><mi>σ</mi></mrow><mrow><mi>w</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441817&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441813&type=
19.64266586
3.30200005
,称
<math id="M6"><mi>T</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441865&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441862&type=
1.94733346
2.28600001
满足Browder定理,其中
<math id="M7"><msub><mrow><mi>σ</mi></mrow><mrow><mi>w</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441846&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441835&type=
8.04333401
3.30200005
和
<math id="M8"><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441842&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441840&type=
7.70466709
3.30200005
分别表示算子
<math id="M9"><mi>T</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441865&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441862&type=
1.94733346
2.28600001
的Weyl谱和Browder谱。本文借助新定义的谱集,给出了有界线性算子及其函数满足Browder定理的新的判定方法。
Let
<math id="M10"><mi>H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441989&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441985&type=
2.70933342
2.62466669
be an infinite dimensional separable complex Hilbert space and
<math id="M11"><mi>B</mi><mfenced separators="|"><mrow><mi>H</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441895&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441879&type=
8.72066593
3.72533321
the algebra of all bounded linear operators on
<math id="M12"><mi>H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441989&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441985&type=
2.70933342
2.62466669
. An operator
<math id="M13"><mi>T</mi><mo>∈</mo><mi>B</mi><mfenced separators="|"><mrow><mi>H</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441912&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441920&type=
15.15533447
3.72533321
is said to satisfy Browder’s theorem if
<math id="M14"><msub><mrow><mi>σ</mi></mrow><mrow><mi>w</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441917&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441915&type=
22.60600090
3.72533321
, where
<math id="M15"><msub><mrow><mi>σ</mi></mrow><mrow><mi>w</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441937&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441934&type=
9.22866726
3.72533321
and
<math id="M16"><msub><mrow><mi>σ</mi></mrow><mrow><mi>b</mi></mrow></msub><mfenced separators="|"><mrow><mi>T</mi></mrow></mfenced></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441940&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49441939&type=
8.89000034
3.72533321
denote the Weyl spectrum and the Browder spectrum of
<math id="M17"><mi>T</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49446669&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49446711&type=
2.28600001
2.62466669
, respectively. With the help of a newly defined spectral set, we give new judgment methods for linear bounded operators and their functions to obey Browder’s theorem.
Browder定理谱Fredholm算子的摄动定理
Browder’s theoremspectrumperturbation theorem of Fredholm operators
WEYL H V. Über beschränkte quadratische formen, deren differenz vollstetig ist [J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1): 373-392.
BERBERIAN S K. An extension of Weyl’s theorem to a class of not necessarily normal operators [J]. Michigan Mathematical Journal, 1969, 16(3): 273-279.
LI C G, ZHU S, FENG Y L. Weyl’s theorem for functions of operators and approximation [J]. Integral Equations and Operator Theory, 2010, 67(4): 481-497.
CURTO R E, HAN Y M. Weyl’s theorem for algebraically paranormal operators [J]. Integral Equations and Operator Theory, 2003, 47(3): 307-314.
AN I, HAN Y. Weyl’s theorem for algebraically quasi-class A operators [J]. Integral Equations and Operator Theory, 2008, 62(1): 1-10.
SHI W, CAO X. Weyl’s theorem for the square of operator and perturbations [J]. Communications in Contemporary Mathematics, 2015, 17(5): 36-46 .
COBURN L A. Weyl’s theorem for nonnormal operators [J]. Michigan Mathematical Journal, 1966, 13(3): 285-288.
DUGGAL B P. The Weyl spectrum of p-hyponormal operators [J]. Integral Equations and Operator Theory, 1997, 29(2): 197-201.
CAO X. Analytically class operators and Weyl’s theorem [J]. Journal of Mathematical Analysis and Applications, 2006, 320(2): 795-803.
HARTE R, LEE W Y. Another note on Weyl’s theorem [J]. Trans Amer Math Soc, 1997, 349(5): 2115-2124.
CAO X, GUO M, MENG B. Weyl spectra and Weyl’s theorem [J]. Journal of Mathematical Analysis and Applications, 2003, 288(2): 758-767.
闫慧凰,曹小红. 有界线性算子及其函数演算的Weyl定理[J].中山大学学报(自然科学版), 2020, 59(2): 22-27.
王静,曹小红. 有界线性算子的Weyl定理的判定[J].浙江大学学报(理学版), 2020, 47(5): 541-547.
SCHMOEGER C. Ein Spektralabbildungs satz [J]. Arch Math, 1990, 55(5): 484-489.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构