广州航海学院基础教学部,广东 广州 510725
江蔓蔓(1989年生),女;研究方向:复分析;E-mail:chnjiangmm@foxmail.com
纸质出版日期:2022-09-25,
网络出版日期:2021-12-31,
收稿日期:2020-11-29,
录用日期:2021-01-19
扫 描 看 全 文
江蔓蔓.关于可测叶状结构空间上两种线性结构的刚性[J].中山大学学报(自然科学版),2022,61(05):144-149.
JIANG Manman.Rigidity about two linear structures on the space of measured laminations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):144-149.
江蔓蔓.关于可测叶状结构空间上两种线性结构的刚性[J].中山大学学报(自然科学版),2022,61(05):144-149. DOI: 10.13471/j.cnki.acta.snus.2020A068.
JIANG Manman.Rigidity about two linear structures on the space of measured laminations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):144-149. DOI: 10.13471/j.cnki.acta.snus.2020A068.
通过黎曼曲面的双曲长度函数与极值长度函数,将可测叶状结构空间实现为Teichmüller 空间的余切空间,从而诱导了可测叶状结构空间上的两种线性结构。证明了这两种线性结构都具有刚性性质,也即不同的黎曼曲面诱导不同的线性结构。
By modeling the space of projective measured laminations in the cotangent space to Teichmüller space via hyperbolic length functions and extremal length functions, we associate two classes of linear structures to the space of measured laminations.We prove that both of these two linear structures are rigid: the induced linear structures on different Riemann surfaces are different
.
Teichmüller空间可测叶状结构线性结构双曲长度极值长度
Teichmüller spacemeasured laminationslinear structureshyperbolic lengthextremal length
ROYDEN H L. Automorphisms and isometries of Teichmüller space [C]//Proceedings of the Romanian Finnish Seminar on Teichmüller Spaces & Quasiconformal Mappings, 1971.
EARLE C J, KRA I. On isometries between Teichmüller spaces [J].Duke Mathematical Journal,1974, 41(3): 583-591.
MARKOVIC V. Biholomorphic maps between Teichmüller spaces [J].Duke Mathematical Journal,2003, 120(2): 405-431.
MASUR H, WOLF M. The Weil-Petersson isometry group [J].Geometriae Dedicata, 2002, 93(1): 177-190.
BROCK J, MARGALIT D. Weil-Petersson isometries via the pants complex [J].Proceedings of the American Mathematical Society, 2007, 135(3): 795-803.
WALSH C. The horoboundary and isometry group of Thurston’s Lipschitz metric [M]//PAPADOPOULOS A.Handbook of Teichmüller theory,IV.IRMA Lectures in Mathematics and Theoretical Physics 19.Zürich: European Mathematical Society, 2014: 327-353.
DUMAS D, LENZHEN A, RAFI K, et al. Coarse and fine geometry of the Thurston metric [J].Forum of Mathematics Sigma, 2020, 8: e28.
PAN H P. Local rigidity of Teichmüller space with Thurston metric [OL].https://arxiv.org/abs/2005.11762v2https://arxiv.org/abs/2005.11762v2.
IVANOV N V. Automorphisms of Teichmüller modular groups [M]//VIRO O Y. Topology and geometry-Rohlin seminar: Volume 1346 of Lecture Notes in Mathematics.Berlin: Springer, 1988: 199-270.
BAVARD J, DOWDALL S, RAFI K. Isomorphisms between big mapping class groups [J].International Mathematics Research Notices, 2020(10): 3084-3099.
IVANOV N V. Automorphism of complexes of curves and of Teichmüller spaces [J].International Mathematics Research Notices, 1997(14): 651-666.
LUO F. Automorphisms of Thurston’s space of measured laminations [M]//KRA I, MASKIT B. In the tradition of Ahlfors and Bers: Proceedings of the first Ahlfors-Bers colloquium.Volume 256 of Contemporary Mathematics.Providence, RI: American Mathematical Society, 2000: 221-225.
CASSON A J, BLEILER S A. Automorphisms of surfaces after Nielsen and Thurston [M].Cambridge: Cambridge University Press, 1988.
PENNER R C, HARER J L. Combinatorics of train tracks [M].Princeton: Princeton University Press, 1992.
KERCKHOFF S P. Earthquakes are analytic [J].Commentarii Mathematici Helvetici, 1985, 60(1): 17-30.
THURSTON W P. Minimal stretch maps between hyperbolic surfaces [OL].https://arxiv.org/abs/math/9801039https://arxiv.org/abs/math/9801039.
KERCKHOFF S P. The Nielsen realization problem [J].Annals of Mathematics, 1983, 117(2): 235-265.
KERCKHOFF S P. The asymptotic geometry of Teichmüller space [J].Topology, 1978, 19(1): 23-41.
PAPADOPOULOS A, SU W. On the Finsler structure of Teichmüller's metric and Thurston's metric [J].Expositiones Mathematicae, 2015, 33(1): 30-47.
GARDINER F P. Measured foliations and the minimal norm property for quadratic differentials [J].Acta Mathematica, 1984, 152(1/2): 57-76.
WENTWORTH R A. Energy of harmonic maps and Gardiner’s formula [M]//CANARY D, GILMAN J, HEINONEN J, et al. In the tradition of Ahlfors-Bers, IV: Volume 432 of Contemporary Mathematics.Providence, RI: American Mathematical Society Contemp, 2007: 221-229.
KERCKHOFF S P. Lines of minima in Teichmüller space [J].Duke Mathematics Journal, 1992, 65(2): 187-213.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构