广州大学数学与信息科学学院,广东 广州510006
武丹(1996年生),女;研究方向:生物数学;E-mail:wudan18826070750@163.com
郭志明(1966年生),男;研究方向:生物数学;E-mail:guozm@gzhu.edu.cn
纸质出版日期:2022-09-25,
网络出版日期:2022-01-07,
收稿日期:2020-11-17,
录用日期:2021-01-06
扫 描 看 全 文
武丹,郭志明.一类Wolbachia氏菌在蚊群传播数学模型的全局动力学[J].中山大学学报(自然科学版),2022,61(05):133-143.
WU Dan,GUO Zhiming.Global dynamics of a mathematical model for the propagation of Wolbachia bacteria in mosquito populations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):133-143.
武丹,郭志明.一类Wolbachia氏菌在蚊群传播数学模型的全局动力学[J].中山大学学报(自然科学版),2022,61(05):133-143. DOI: 10.13471/j.cnki.acta.snus.2020A063.
WU Dan,GUO Zhiming.Global dynamics of a mathematical model for the propagation of Wolbachia bacteria in mosquito populations[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):133-143. DOI: 10.13471/j.cnki.acta.snus.2020A063.
蚊媒传染病指的是由蚊子来传播的传染病,主要包括登革热、寨卡、疟疾等。一种新型的控制和预防蚊媒传染病的方式是利用内共生菌
Wolbachia
(沃尔巴克氏)来阻断病源体的传播。本文建立了一个新的常微分方程模型研究
Wolbachia
氏菌在蚊群中的传播。应用常微分方程定性理论,证明了模型解的非负性和有界性,给出了平衡点存在条件;在各种不同的参数条件下,得到了平衡点的全局稳定性态;讨论了
Wolbachia
氏菌能够成功入侵野生蚊群的条件;在特殊参数的情况下得到
Wolbachia
能够成功入侵的初值阈值,为释放携带
Wolbachia
氏菌的蚊子提供新的策略。最后用数值模拟验证了相关结论。
Mosquito-borne diseases are infectious diseases transmitted by mosquitoes, including dengue fever, Zika and malaria. A new way to control and prevent mosquito-borne infectious diseases is to use the endosymbiotic bacterium
Wolbachia
to interrupt the transmission of the pathogen. A new ordinary differential equation model is established to study the transmission of
Wolbachia
in mosquito population. By using the qualitative theory of ordinary differential equations, the nonnegativity and boundedness of solutions of the model are proved, and the existence condition of the equilibrium points is given. The globally asymptotic stability of the equilibrium is obtained in different situations. The conditions of
Wolbachia
successfully invading wild mosquito population are discussed. In special case for parameters, the threshold for initial values of
Wolbachia
invasion is given, which provides a new strategy for releasing mosquitoes carrying
Wolbachia
. Finally, main conclusions are verified by numerical simulation.
常微分方程种群动力学Wolbachia登革热全局渐近稳定
ordinary differential equation modelpopulation dynamicsWolbachiadengueglobally asymptotic stability
BIAN G W, XU Y, LU P, et al. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti [J]. PLoS Pathogens, 2010, 6(4): e1000833.
ITURBE-ORMAETXE I, WALKER T, O’NEILL S L. Wolbachia and the biological control of mosquito-borne disease[J]. EMBO Reports, 2011, 12(6): 508-518.
XI Z Y, KHOO C C H, DOBSON S L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population[J]. Science, 2005, 310(5746): 326-328.
HOFFMANN A A, TURELLI M, HARSHMAN L G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans [J]. Genetics, 1990, 126(4): 933-948.
HOFFMANN A A, TURELLI M. Cytoplasmic incompatibility in insects [M]. Oxford: Oxford University Press, 1997.
ZHENG B, TANG M X, YU J S. Modeling Wolbachia spread in mosquitoes through delay differential equations [J]. SIAM Journal on Applied Mathematics, 2014, 74(3): 743-770.
ZHENG B, GUO W L, HU L C, et al. Complex Wolbachia infection dynamics in mosquitoes with imperfect maternal transmission [J]. Mathematical Biosciences and Engineering, 2018, 15(2): 523-541.
KEELING M J, JIGGINS F M, READ J M. The invasion and coexistence of competing Wolbachia strains [J]. Heredity, 2003, 91(4): 382-388.
HUANG M G, TANG M X, YU J S. Wolbachia infection dynamics by reaction-diffusion equations [J]. Science China Mathematics, 2015, 58(1): 77-96.
HUANG M G, YU J S, HU L C, et al. Qualitative analysis for a Wolbachia infection model with diffusion [J]. Science China Mathematics, 2016, 59(7): 1249-1266.
HU L C, HUANG M G, TANG M X, et al. Wolbachia spread dynamics in multi-regimes of environmental conditions[J]. Journal of Theoretical Biology, 2019, 462(7): 247-258.
LI Y J, GUO Z M, XING Y Y. Modeling Wolbachia diffusion in mosquito populations by discrete competition model [J]. Discrete Dynamics in Nature and Society, 2020: 1-11.
HUANG M G, LUO J W, HU L C, et al. Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations [J]. Journal of Theoretical Biology, 2018: 1-11.
杨俊仙, 吴元翠, 闫萍. 一类具时滞与饱和发生率的HIV-1传染病模型的全局稳定性[J]. 中山大学学报(自然科学版), 2016, 55(4): 26-29.
杨俊仙, 王雷宏. 具饱和发生率的被修正HIV传染病模型的全局稳定性[J]. 中山大学学报(自然科学版), 2018, 57(3): 64-69.
杨俊仙, 闫萍. 一类具饱和发生率的时滞SEIR传染病模型的分析[J]. 中山大学学报(自然科学版), 2015, 54(3): 51-55.
马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2015.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构