ZHANG Shengui.Periodic solutions for a class of second-order discrete system with variable exponent[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):163-170.
ZHANG Shengui.Periodic solutions for a class of second-order discrete system with variable exponent[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):163-170. DOI: 10.13471/j.cnki.acta.snus.2020A053.
The existence for periodic solution of Kirchhoff-type second-order discrete system with variable exponent is studied. Some results for existence of periodic solutions are obtained by using the least action principle and the saddle point theorem in critical point theory.
关键词
周期解离散p(k)-Laplace算子变指数基尔霍夫问题
Keywords
periodic solutiondiscrete p(k)-Laplacian operatorvariable exponentKirchhoff problem
references
GUO Z M, YU J S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations [J]. J London Math Soc, 2003, 68(2): 419-430.
XUE Y F, TANG C L. Existence of a periodic solution for subquadrac second-order discrete Hamiltonian systems [J]. Nonlinear Anal Theory Methods Appl, 2007, 67: 2072-2080.
MAWHIN J. Periodic solutions of second order nonlinear difference systems with <math id="M340"><mi>ϕ</mi></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469138&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49469136&type=2.032000062.87866688-Laplacian: a variational approach [J]. Nonlinear Anal Theory Methods Appl, 2012, 75(1): 4672-4687.
YAN S H, WU X P, TANG C L. Multiple periodic solutions for second-order discrete Hamiltonian systems [J]. Appl Math Comput, 2014, 234: 142-149.
JIANG Q, MA S, HU Z H. Existence of multiple periodic solutions for second-order discrete Hamiltonian systems with partially periodic potentials [J]. Electron J Differ Equ, 2016, 307: 1-15.
WANG D B, GUO M. Multiple periodic solutions for second-order discrete Hamiltonian systems [J]. J Nonlinear Sci Appl, 2017, 10: 410-418.