湖南第一师范学院数学与计算科学学院, 湖南 长沙 410205
丁宗鹏(1987年生),男;研究方向:图论及其应用;E-mail:dzppxl@163.com
纸质出版日期:2022-07-25,
网络出版日期:2022-01-07,
收稿日期:2020-09-11,
录用日期:2021-01-19
扫 描 看 全 文
丁宗鹏.图的反符号边控制数的新上界[J].中山大学学报(自然科学版),2022,61(04):178-182.
DING Zongpeng.The new upper bounds of inverse signed edge domination number in graphs[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):178-182.
丁宗鹏.图的反符号边控制数的新上界[J].中山大学学报(自然科学版),2022,61(04):178-182. DOI: 10.13471/j.cnki.acta.snus.2020A052.
DING Zongpeng.The new upper bounds of inverse signed edge domination number in graphs[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):178-182. DOI: 10.13471/j.cnki.acta.snus.2020A052.
对图
<math id="M1"><mi>G</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449680&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449638&type=
2.28600001
2.62466669
的反符号边控制数进行了研究,给出了一般图的反符号边控制数的若干新上界,并证明这些上界是可达的。
The inverse signed edge domination number of the graph
<math id="M2"><mi>G</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449734&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449707&type=
2.37066650
2.28600001
is studied.Some new upper bounds of the inverse signed edge domination number of general graphs are given, and these upper bounds are proved to be sharp.
上界反符号边控制函数反符号边控制数
upper boundinverse signed edge dominating functioninverse signed edge domination number
BONDY J A, MURTY U S R. Graph theory [M].Berlin: Springer, 2008.
COCKAYNE E J, MYNHART C M. On a generalization of signed domination functions of graphs [J]. Ars Combinatoria, 1996, 43: 235-245.
HAYNES T W, HEDETNIEMI S T, SLATER P J. Domination in graphs [M].Boca Raton: CRC Press, 1998.
HAYNES T W, HEDETNIEMI S T, SLATER P J. Fundamentals of domination in graphs [M]. Boca Raton: CRC Press, 1998.
XU B G. On signed edge domination numbers of graphs [J]. Discrete Mathematics, 2001, 239(1): 179-189.
XU B G. On edge domination numbers of graphs [J]. Discrete Mathematics, 2005, 294(3): 311-316.
XU B G. Two classes of edge domination in graphs [J]. Discrete Applied Mathematics, 2006, 154(10): 1541-1546.
黄中升, 邢化明, 赵燕冰. 图的逆符号边控制数的上界[J]. 应用数学学报, 2010, 33(5): 840-846.
KANG L Y, SHAN E F. Signed and minus dominating functions in graphs [M]// HAYNES T W,et al, eds. Topics in domination in graphs, Developments in Mathematics (Vol 64). Cham: Springer, 2020: 301-348.
SHAN E F, KANG L Y. Characterization of graphs with equal domination and matching numbers [J]. Advances in Mathematics, 2004, 33(2): 229-235.
PAL S, PRADHAN D. The strong domination problem in block graphs and proper interval graphs [J]. Discrete Mathematics Algorithms and Applications, 2019, 11(6): 111-118.
HAJIBABA M, RAD N J. A note on the italian domination number and double roman domination number in graphs [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 109(MAY): 169-183.
张旭, 陈学刚. 图的有效符号边控制数[J]. 天津科技大学学报, 2015, 30(4): 73-77.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构