南昌航空大学科技学院,江西 共青城 332020
孟旭东(1982年生),男;研究方向:向量优化理论及应用;E-mail:mxudongm@163.com
纸质出版日期:2022-03-25,
网络出版日期:2021-06-02,
收稿日期:2020-08-15,
录用日期:2020-12-17
扫 描 看 全 文
孟旭东.基于改进集的参数集值优化问题解集映射的稳定性[J].中山大学学报(自然科学版),2022,61(02):180-188.
MENG Xudong.Stability of solution set mapping for parametric set-valued optimization problems via improved sets[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):180-188.
孟旭东.基于改进集的参数集值优化问题解集映射的稳定性[J].中山大学学报(自然科学版),2022,61(02):180-188. DOI: 10.13471/j.cnki.acta.snus.2020A043.
MENG Xudong.Stability of solution set mapping for parametric set-valued optimization problems via improved sets[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(02):180-188. DOI: 10.13471/j.cnki.acta.snus.2020A043.
在实赋范线性空间中讨论了基于改进集的参数集值优化问题解集映射的稳定性。在目标函数具有
<math id="M1"><mi>C</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466994&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466992&type=
1.94733346
2.28600001
-Hausdorff连续性和
<math id="M2"><mi>E</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466981&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466980&type=
1.94733346
2.28600001
-闭性及可行集具有连续性和紧凸性条件下,分析了关于改进集
<math id="M3"><mi>E</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466981&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466980&type=
1.94733346
2.28600001
的水平集值映射的上半连续性和下半连续性。在此基础上,在目标函数构成的序偶映射具有严格
<math id="M4"><mi>E</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466981&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466980&type=
1.94733346
2.28600001
-拟凸性基本假设下,通过分析的方法获得了具改进集的参数集值优化问题解集映射的Berge连续性、Hausdorff连续性、
<math id="M5"><mi>C</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466994&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49466992&type=
1.94733346
2.28600001
-Hausdorff连续性和紧闭性定理。
The stability of solution set mapping for parameter set-valued optimization problems via improved sets in real normed vector space is discussed. The upper semi-continuity and lower semi-continuity of level set-valued mappings via improved sets
<math id="M6"><mi>E</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467003&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467001&type=
2.28600001
2.62466669
is analyzed under the conditions that the objective function having
<math id="M7"><mi>C</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467023&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467010&type=
2.53999996
2.62466669
-Hausdorff continuity and
<math id="M8"><mi>E</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467009&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467007&type=
2.28600001
2.62466669
-closure and the feasible set having continuity and compact convexity. On this basis, through the method of analysis, the theorems of the Berge continuity, Hausdorff continuity,
<math id="M9"><mi>C</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467023&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49467010&type=
2.53999996
2.62466669
-Hausdorff continuity compactness and closeness of solution set mapping for parametric set-valued optimization problems via improved sets are obtained by the method of analysis with the help of the basic assumption of strict-quasi-convexity for the ordered-even mappings composed of objective functions.
解集映射改进集稳定性连续性参数集值优化问题
solution set mappingimproved setsstabilitycontinuityparameter set-valued optimization problems
LUC D T. Theory of vector optimization [M]. Berlin: Springer, 1989.
SAWARAGI Y, MAKAYAMA H, TANINO T. Theory of multiobjective optimization [M]. New York: Academic Press, 1985.
LUCCHETTI R E, MIGLIERINA E. Stability for convex vector optimization problems [J]. Optimization, 2004, 53(5/6): 517-528.
HUANG X X. Stability in vector-valued and set-valued optimization [J]. Math Methods Oper Res, 2000, 52(2): 185-193.
HUANG X X, YANG X Q. On characterizations of proper efficiency for nonconvex multiobjective optimization [J]. J Glob Optim, 2002, 23(3): 213-231.
LALITHA C S, CHATTERJEE P. Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities [J]. J Optim Theory Appl, 2012, 155(3): 941-961.
ANH L Q, HUNG N V. On the stability of solution mappings for parametric generalized vector quasivariational inequality problems of the Minty type [J]. Filomat, 2017, 31(3): 747-757.
ANH L Q, HUNG N V. Stability of solution mappings for parametric bilevel vector equilibrium problems [J]. Comp Appl Math, 2018, 37(2): 1537-1549.
HUNG N V, HAI N M. Stability of approximating solutions to parametric bilevel vector equilibrium problems and applications [J]. Comp Appl Math, 2019, 38(2): 57.
HUNG N V. On the stability of the solution mapping for parametric traffic network problems [J]. Indag Math, 2018, 29(3): 885-894.
CHENG Y H, ZHU D L. Global stability for the weak vector variational inequality [J]. J Glob Optim, 2005, 32(4): 543-550.
GONG X H. Continuity of the solution set to parametric weak vector equilibrium problems [J]. J Optim Theory Appl, 2008, 139(1): 35-46.
GONG X H, YAO J C. Lower semicontinuity of the set of efficient solutions for generalized systems [J]. J Optim Theory Appl, 2008, 138(2): 197-205.
CHEN C R, LI S J. On the solution continuity of parametric generalized systems [J]. Pacific J Optim, 2010, 6(1): 141-151.
HAN Y, GONG X H. Semicontinuity of solution mappings to parametric generalized vector equilibrium problems [J]. Numer Funct Anal Optim, 2016, 37(11): 1420-1437.
HAN Y, HUANG N J. Stability of efficient solutions to parametric generalized vector equilibrium problems [J]. Sci China Math, 2017, 47(3): 397-408.
CHICCO M, MIGNANEGO F, PUSILLO L, et al. Vector optimization problems via improvement sets [J]. J Optim Theory Appl, 2011, 150(3): 516-529.
GUTIÉRREZ C, JIMÉNEZ B, NOVO V. Improvement sets and vector optimization [J]. Eur J Oper Res, 2012, 223(2): 304-311.
ZHAO K Q, YANG X M. A unified stability result with perturbations in vector optimization [J]. Optim Lett, 2013, 7(8): 1913-1919.
ZHAO K Q,YANG X M. E-Benson proper efficiency in vector optimization [J]. Optimization, 2015,64(4): 1777-1793.
OPPEZZI P, ROSSI A. Improvement sets and convergence of optimal points [J]. J Optim Theory Appl, 2015, 165(2): 405-419.
OPPEZZI P, ROSSI A. Existence and convergence of optimal points with respect to improvement sets [J]. SIAM J Optim, 2016, 26(2): 1293-1311.
XU D Y, LI S J. On the solution continuity of parametric set optimization problems [J]. Math Methods Oper Res, 2016, 84(1): 223-237.
KHOSHKHABAR-AMIRANLOO S. Stability of minimal solutions to parametric set optimization problems [J]. Appl Anal, 2018, 97(14): 1-13.
MAO J Y, WANG S H, HAN Y. The stability of the solution sets for set optimization problems via improvement sets [J]. Optimization, 2019, 68(11): 1-23.
孟旭东, 王三华. 含参广义集值优化问题解集映射的连续性[J]. 吉林大学学报(理学版), 2018, 56(4): 830-836.
孟旭东, 周蓉. 参数强向量原始与对偶均衡问题解映射的Lipschitz连续性[J]. 南昌大学学报(理科版), 2020, 44(4): 313-316+322.
邵重阳, 彭再云, 刘芙萍, 等. 改进集映射下参数广义向量拟平衡问题解映射的Berge下半连续性[J]. 应用数学和力学, 2020, 41(8): 912-920.
PENG Z Y, WANG Z Y, YANG X M. Connectedness of solution sets for weak generalized symmetric Ky Fan inequality problems via addition-invariant sets [J]. J Optim Theory Appl, 2020, 185: 188-206.
XU X, XU D Y, SUN Y M. Semicontinuity of the minimal solution set mappings for parametric set-valued vector optimization problems [J]. J Oper Res Soc China, 2021,9: 441-454.
GÖPFERT A, RIAHI H, TAMMER C, et al. Variational methods in partially ordered spaces [M]. New York: Springer-Verlag,2003.
DHINGRA M, LALITHA C S. Set optimization using improvement sets [J]. Yugosl J Oper Res, 2017, 27(2): 153-167.
0
浏览量
1
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构