1.咸阳师范学院数学与信息科学学院, 陕西 咸阳 712000
2.陕西师范大学数学与信息科学学院, 陕西 西安 710062
马飞(1981年生),男;研究方向:算子代数与自由概率;E-mail:mafei6337@sina.com
张建华(1965年生),男;研究方向:算子代数与自由概率;E-mail:jhzhang@snnu.edu.cn
纸质出版日期:2022-07-25,
网络出版日期:2022-01-07,
收稿日期:2020-07-01,
录用日期:2021-05-18
扫 描 看 全 文
马飞,张建华,刘红哲.完全分配可交换子空间格代数上的非线性广义Lie导子[J].中山大学学报(自然科学版),2022,61(04):170-177.
MA Fei,ZHANG Jianhua,LIU Hongzhe.Nonlinear generalized Lie derivations on completely distributive commutative subspace lattice algebras[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):170-177.
马飞,张建华,刘红哲.完全分配可交换子空间格代数上的非线性广义Lie导子[J].中山大学学报(自然科学版),2022,61(04):170-177. DOI: 10.13471/j.cnki.acta.snus.2020A029.
MA Fei,ZHANG Jianhua,LIU Hongzhe.Nonlinear generalized Lie derivations on completely distributive commutative subspace lattice algebras[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(04):170-177. DOI: 10.13471/j.cnki.acta.snus.2020A029.
设
<math id="M1"><mi mathvariant="normal">A</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">g</mi><mi mathvariant="normal">ℒ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452505&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452502&type=
6.60400009
2.96333337
是 Hilbert 空间
<math id="M2"><mi mathvariant="normal">H</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452476&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452473&type=
2.28600001
2.28600001
上的一个完全分配可交换子空间格代数,
<math id="M3"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452567&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452559&type=
0.93133330
2.96333337
是
<math id="M4"><mi mathvariant="normal">A</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">g</mi><mi mathvariant="normal">ℒ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452505&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452502&type=
6.60400009
2.96333337
上的非线性广义Lie 导子,
<math id="M5"><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452574&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452570&type=
1.60866666
2.28600001
是
<math id="M6"><mi mathvariant="normal">A</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">g</mi><mi mathvariant="normal">ℒ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452542&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452539&type=
6.60400009
2.96333337
上与
<math id="M7"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452567&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452559&type=
0.93133330
2.96333337
相关的非线性映射,则
<math id="M8"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452567&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452559&type=
0.93133330
2.96333337
和
<math id="M9"><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452574&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452570&type=
1.60866666
2.28600001
分别是可加广义导子和交换子上为零的映射之和。
Let
<math id="M10"><mi mathvariant="normal">A</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">g</mi><mi mathvariant="normal">ℒ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452589&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452585&type=
6.60400009
2.96333337
be a completely distributive commutative subspace lattice algebra,
<math id="M11"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452643&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452626&type=
1.10066664
3.38666677
be a nonlinear generalized Lie derivation on
<math id="M12"><mi mathvariant="normal">A</mi><mi mathvariant="normal">l</mi><mi mathvariant="normal">g</mi><mi mathvariant="normal">ℒ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452619&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452602&type=
6.60400009
2.96333337
with an associated nonlinear map
<math id="M13"><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452648&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452645&type=
1.86266661
2.70933342
.Then
<math id="M14"><mi>f</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452643&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452626&type=
1.10066664
3.38666677
and
<math id="M15"><mi>d</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452648&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49452645&type=
1.86266661
2.70933342
are the sum of an additive generalized derivation and a map into its center sending each commutator to zero,respectively.
完全分配可交换子空间格代数非线性广义Lie导子广义导子
completely distributive commutative subspace lattice algebranonlinear generalized Lie derivationgeneralized derivation
BREŠAR M.On the distance of the composition of two derivations to the generalized derivations [J]. Glasgow Math J, 1991, 33(1): 89-93.
HVALA B. Generalized derivations in rings [J]. Communications in Algebra, 1998, 26(4): 1147-1166.
BENKOVIČ D. Jordan derivations and anti-derivations on triangular matrices [J]. Linear Algebra and Its Applications, 2005, 397(1): 235-244.
MA F, JI G X. Generalized Jordan derivation on triangular matrix algebra [J]. Linear and Multilinear Algebra, 2007, 55(4): 355-363.
MARTINDALE W S. Lie derivations of primitive rings [J]. Michigan Math J, 1964, 11(2): 183-187.
MIERS C R. Lie derivations of von Neumann algebras [J]. Duke Math J, 1973, 40(2): 403-409.
ZHANG J H. Lie derivations on nest subalgebras of von Neumann algebras [J]. Acta Math Sinica, 2003, 46(4): 657-664.
CHEUNG W S. Lie derivation of triangular algebras [J]. Linear and Multilinear Algebra, 2003, 51(3): 299-310.
MATHIEU M, VILLENA A R. The structure of Lie derivations on <math id="M521"><msup><mrow><mi>C</mi></mrow><mrow><mi mathvariant="normal">*</mi></mrow></msup></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49456293&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49456292&type=3.048000102.53999996-algebras [J]. J Funct Anal, 2003, 202(2): 504-525.
CHEN L, ZHANG J H. Nonlinear Lie derivation on upper triangular matrix algebras [J]. Linear and Multilinear Algebra, 2008, 56(6): 725-730.
YU W Y, ZHANG J H. Nonlinear Lie derivations of triangular algebras [J]. Linear Algebra and Its Applications, 2010, 432(11): 2953-2960.
BAI F, DU S P. The structure of nonlinear Lie derivation on von Neumann algebras [J]. Linear Algebra and Its Applications, 2012, 436(7): 2701-2708.
BENKOVIČ D. Generalized Lie derivations on triangular algebras [J]. Linear Algebra and Its Applications, 2011, 434(6): 1532-1544.
FEI X H, ZHANG J H. Nonlinear generalized Lie derivations on triangular algebras [J]. Linear and Multilinear Algebra, 2017, 65(6): 1158-1170.
LAMBROU M S. Complete distributivity lattices [J]. Fundamental Math, 1983, 119(3): 227-240.
马飞,张建华,贺雯.CDC-代数上的广义Jordan中心化子[J].山东大学学报(理学版), 2015, 50(6): 83-88.
LAURIE C, LONGSTAFF W. A note on rank-one operators in reflexive algebras [J]. Proc Amer Math Soc, 1983, 89(2): 293-297.
GILFEATHER F, MOORE R L. Isomorphisms of certain CSL algebras [J]. J Funct Anal, 2010, 67(2): 264-291.
LU F Y. Lie derivations of certain CSL algebras [J]. Israel J Math, 2006, 155(1): 149-156.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构