1.南京信息工程大学数学与统计学院,江苏 南京 210044
2.南京晓庄学院信息工程学院,江苏 南京 211171
王尧(1962年生),男;研究方向:环论;E-mail:wangyao@nuist.edu.cn
任艳丽(1965年生),女;研究方向:环论;E-mail:renyanlisx@163.com
纸质出版日期:2022-09-25,
网络出版日期:2022-03-24,
收稿日期:2020-05-15,
录用日期:2021-10-28
扫 描 看 全 文
王尧,史叶萍,任艳丽.斜逆洛朗级数环的弱McCoy性[J].中山大学学报(自然科学版),2022,61(05):150-158.
WANG Yao,SHI Yeping,REN Yanli.On the weak McCoy property of skew inverse Laurent series rings[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):150-158.
王尧,史叶萍,任艳丽.斜逆洛朗级数环的弱McCoy性[J].中山大学学报(自然科学版),2022,61(05):150-158. DOI: 10.13471/j.cnki.acta.snus.2020A020.
WANG Yao,SHI Yeping,REN Yanli.On the weak McCoy property of skew inverse Laurent series rings[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2022,61(05):150-158. DOI: 10.13471/j.cnki.acta.snus.2020A020.
设
<math id="M1"><mtext> </mtext><mi>σ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447979&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447947&type=
2.79399991
2.37066650
是环
R
上的一个自同构,
<math id="M2"><mi>δ</mi><mtext> </mtext></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447984&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447965&type=
2.20133328
2.37066650
是
R
上的一个
<math id="M3"><mi>σ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447988&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447986&type=
2.11666679
2.28600001
-导子,本文引进
<math id="M4"><mo stretchy="false">(</mo><mi>σ</mi><mo>
</mo><mi>δ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447994&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49447991&type=
7.61999989
2.96333337
-SILS右弱McCoy环的概念,采用分项讨论方法,给出该环的刻画,探讨它们的结构性质,丰富一般斜逆洛朗级数环的研究。
Let
R
be a ring with an automorphism
<math id="M5"><mi>σ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449585&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449584&type=
2.45533323
2.62466669
and a
<math id="M6"><mi>σ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449589&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449588&type=
2.45533323
2.62466669
-derivation
<math id="M7"><mi>δ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449587&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449586&type=
1.77800000
2.62466669
. We introduce the concept of
<math id="M8"><mo stretchy="false">(</mo><mi>σ</mi><mo>
</mo><mi>δ</mi><mo stretchy="false">)</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49448889&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49448888&type=
8.89000034
3.47133350
-SILS right weak McCoy rings,give their characterizations and investigate their structural properties by means of the itemized discussion method, enriching the research of general skew inverse Laurent series rings.
斜逆洛朗级数环右弱McCoy环环扩张
skew inverse Laurent series ringright weak McCoy ringextension of rings
LETZTER E S,WANG L. Noetherian skew inverse power series rings [J]. Algebras Represent Theory,2010,13(3):303-314.
TUGANBAEV D A. Laurent series rings and pseudo-differential operator rings [J]. J Math Sci,2005,128(3):2843-2893.
ALHEVAZ A,KIANI D. On primeness of general skew inverse Laurent series ring [J]. Commun Algebra,2017,45(3):919-923.
HABIBI M,MOUSSAVI A,MOKHTARI S. On skew Armendariz of Laurent series type rings [J]. Commun Algebra,2012,40(11):3999-4018.
PAYKAN K,MOUSSAVI A. Study of skew inverse Laurent series rings [J]. J Algebra Appl,2017,16(12):1750221.
ALHEVAZ A,KIANI D. On zero-divisors in skew inverse Laurent series over noncommutative rings [J].Commun Algebra,2014,42(2):469-487.
YANG S,SONG X,LIU Z. Power-serieswise McCoy rings [J]. Algebra Colloq,2011,18(2):301-310.
李敏,王尧,任艳丽. 幂级数弱McCoy环[J]. 山东大学学报(理学版),2016,51(2):6-11.
ALHEVAZ A,KIANI D. Radicals of skew inverse Laurent series rings [J]. Commun Algebra,2013,41(8):2884-2902.
史叶萍,王尧,任艳丽. 斜逆 Laurent 级数环的弱 Armendariz 性质[J]. 吉林大学学报(理学版),2020,58(4):808-814.
OUYANG L,LIU J. On weak <math id="M758"><mo stretchy="false">(</mo><mi>α</mi><mo>,</mo><mi>δ</mi><mo stretchy="false">)</mo></math>https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449620&type=https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=49449610&type=7.281332972.96333337-compatible rings [J]. Int J Algebra,2011,5(26):1283-1296.
HWANG S U,JEON Y C,LEE Y. Structure and topological conditions of NI rings [J]. J Algebra,2006,302(1):186-199.
CHENG G. CHEN J. The structure of ring R[D,C] and its characterizations [J]. J Nanjing Univ Math Biquarterly,2007,24(1):20-28.
CHEN J,YANG X,ZHOU Y. On strongly clean matrix and triangular matrix rings [J]. Commun Algebra,2006,34(10):3659-3674.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构