1.华中科技大学物理学院,湖北 武汉 430074
2.天琴计划”教育部重点实验室,中山大学天琴中心 & 物理与天文学院,天琴前沿科学中心, 国家航天局引力波研究中心,广东 珠海 519082
李洪银(1983年生),男;研究方向:无拖曳卫星/惯性传感器设计、控制与仿真;E-mail:hongyin1983li@hust.edu.cn
周泽兵(1973年生),男;研究方向:空间惯性传感器、空间引力波和卫星重力测量;E-mail: zhouzb@hust.edu.cn
纸质出版日期:2021-01-25,
网络出版日期:2021-01-15,
收稿日期:2020-11-21,
录用日期:2020-11-29
扫 描 看 全 文
李洪银,刘雁冲,王铖锐等.天琴惯性传感器初步设计思考与进展[J].中山大学学报(自然科学版),2021,60(01):186-193.
LI Hongyin,LIU Yanchong,WANG Chengrui,et al.Preliminary design consideration and development of TianQin inertial sensor[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):186-193.
李洪银,刘雁冲,王铖锐等.天琴惯性传感器初步设计思考与进展[J].中山大学学报(自然科学版),2021,60(01):186-193. DOI: 10.13471/j.cnki.acta.snus.2020.11.21.2020B144.
LI Hongyin,LIU Yanchong,WANG Chengrui,et al.Preliminary design consideration and development of TianQin inertial sensor[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(01):186-193. DOI: 10.13471/j.cnki.acta.snus.2020.11.21.2020B144.
介绍了引力波探测任务中惯性传感器的需求、工作原理和发展,重点讨论了LISA Pathfinder卫星惯性传感器的研究进展。对比天琴计划需求分析,讨论了天琴惯性传感器的设计要点,在此基础上给出了天琴惯性传感器的初步设计和噪声分析。最后,介绍了天琴一号惯性传感器在轨测量结果和后续研究计划。
This work firstly introduces the requirement, principle and development of inertial sensors in gravitational wave detection mission, and focuses on the development of LISA Pathfinder inertial sensors. Compared with the requirements analysis of TianQin project, the design points of TianQin inertial sensor are discussed, and on this basis, the preliminary design and noise analysis of TianQin inertial sensor are given.A preliminary design of the key parameters for the TianQin inertial sensor is then carried out, which are employed to calculate and synthesize the direct perturbations on TM. Finally, the in-orbit performance of TianQin-1 inertial sensors and follow-up research plan is presented.
惯性传感器引力波探测天琴计划
inertial sensorgravitational wave detectionTianQin Project
LUO J, CHEN L S, DUAN H Z, et al. TianQin: A space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. DOI:10.1088/0264-9381/33/3/035010http://dx.doi.org/10.1088/0264-9381/33/3/035010.
Staff of the Space Department in the Johns Hopkins University. A satellite freed of all but gravitational forces: “TRIAD I”[J]. Spacecraft, 1974, 11: 637-644.
MOE K, DEBRA D B, PATTEN R AVAN, et al. Exospheric density measurements from the drag-free satellite triad[J]. Journal of Geophysical Research, 1976, 81(22): 3753–3761. DOI:10.1029/JA081i022p03753http://dx.doi.org/10.1029/JA081i022p03753.
BEAUSSIER J, MMAINGUY A, OLIVERO A, et al. In orbit performance of the cactus accelerometer (D5B Spacecraft)[J]. Acta Astronautica, 1977, 4(9/10): 1085-1102. DOI:10.1016/0094-5765(77)90008-Xhttp://dx.doi.org/10.1016/0094-5765(77)90008-X.
TOUBOUL P, FOULON B, CHRISTOPHE B, et al. CHAMP, GRACE, GOCE Instruments and beyond[M/OL]// KENYON S, PACINO M C, MARTI U, eds.Geodesy for planet Earth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 215–221. http://link.springer.com/10.1007/978-3-642-20338-1_26. DOI:10.1007/978-3-642-20338-1_26http://link.springer.com/10.1007/978-3-642-20338-1_26.DOI:10.1007/978-3-642-20338-1_26.
MCNAMARA P, VITALE S, DANZMANN K, et al. LISA pathfinder[J]. Classical and Quantum Gravity, 2008, 25(11): 114034. DOI:10.1088/0264-9381/25/11/114034http://dx.doi.org/10.1088/0264-9381/25/11/114034.
CASTELLIELEONORA. LISA pathfinder noise performance results:disturbances in the sub-MHz frequency band and projection to LISA[D]. Italy: University of Trento, 2020.
ARMANO M, AUDLEY H, AUGER G, et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23): 231101. DOI:10.1103/PhysRevLett.116.231101http://dx.doi.org/10.1103/PhysRevLett.116.231101.
ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required lisa free-fall performance: New LISA pathfinder results down to 20 μ Hz[J]. Physical Review Letters, 2018, 120(6): 061101. DOI:10.1103/PhysRevLett.120.061101http://dx.doi.org/10.1103/PhysRevLett.120.061101.
HU M, BAI Y Z, ZHOU Z B, et al. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge[J]. Review of Scientific Instruments, 2014, 85(5): 055001. DOI:10.1063/1.4873334http://dx.doi.org/10.1063/1.4873334.
胡明. 高精度电容位移传感电路研制[D]. 武汉: 华中科技大学, 2014.
LIU L, BAI Y Z, ZHOU Z B, et al. Measurement of the effect of a thin discharging wire for an electrostatic inertial sensor with a high-quality-factor pendulum[J]. Classical and Quantum Gravity, 2012, 29(5): 055010. DOI:10.1088/0264-9381/29/5/055010http://dx.doi.org/10.1088/0264-9381/29/5/055010.
BAI Y Z, FANG L, LUO J, et al. Improving the measurement sensitivity of angular deflection of a torsion pendulum by an electrostatic spring[J]. Classical and Quantum Gravity, 2015, 32(17): 175018. DOI:10.1088/0264-9381/32/17/175018http://dx.doi.org/10.1088/0264-9381/32/17/175018.
TAN D Y, YIN H, ZHOU Z B. Seismic noise suppression for ground-based investigation of an inertial sensor by suspending the electrode cage[J]. Chinese Physics Letters, 2015, 32(9): 090401. DOI:10.1088/0256-307X/32/9/090401http://dx.doi.org/10.1088/0256-307X/32/9/090401.
ZHOU Z B, LIU L, TU H B, et al. Seismic noise limit for ground-based performance measurements of an inertial sensor using a torsion balance[J]. Classical and Quantum Gravity, 2010, 27(17): 175012. DOI:10.1088/0264-9381/27/17/175012http://dx.doi.org/10.1088/0264-9381/27/17/175012.
QU S B, XIA X M, BAI Y Z, et al. Self-calibration method of the bias of a space electrostatic accelerometer[J]. Review of Scientific Instruments, 2016, 87(11): 114502. DOI:10.1063/1.4966248http://dx.doi.org/10.1063/1.4966248.
LI H Y, QU S B, BAI Y Z , et al. Least squares estimation of in-orbit mass center position of the electrostatic accelerometer[J]. Chinese Journal Of Geophysics, 2017, 60(3): 897-902. DOI:10.6038/cjg20170304http://dx.doi.org/10.6038/cjg20170304.
GAO F, ZHOU Z B, LUO J. Feasibility for testing the equivalence principle with optical readout in space[J]. Chinese Physics Letters, 2011, 28(8): 080401. DOI:10.1088/0256-307X/28/8/080401http://dx.doi.org/10.1088/0256-307X/28/8/080401.
LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013. DOI:10.1088/1361-6382/aba66ahttp://dx.doi.org/10.1088/1361-6382/aba66a.
0
浏览量
3
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构