1.中山大学化学学院,广东 广州 510275
2.中山大学生物医学工程学院,广东 深圳 518107
3.黔南民族医学高等专科学校,贵州 都匀 558013
李春荣(1983年生),女;研究方向:纳米生物传感及化学分析研究; E-mail:lichunrong68@163.com
邹小勇(1964年生),男;研究方向:生物电分析化学,化学生物信息学; E-mail:ceszxy@mail.sysu.edu.cn
纸质出版日期:2021-05-25,
网络出版日期:2021-04-15,
收稿日期:2020-11-18,
录用日期:2020-12-07
扫 描 看 全 文
李春荣,邹小勇,戴宗.硅纳米粒子的功能化及生物分析应用[J].中山大学学报(自然科学版),2021,60(03):1-11.
LI Chunrong,ZOU Xiaoyong,DAI Zong.Founctional silicon nanoparticles and bioanalitical application[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):1-11.
李春荣,邹小勇,戴宗.硅纳米粒子的功能化及生物分析应用[J].中山大学学报(自然科学版),2021,60(03):1-11. DOI: 10.13471/j.cnki.acta.snus.2020.11.18.2020C026.
LI Chunrong,ZOU Xiaoyong,DAI Zong.Founctional silicon nanoparticles and bioanalitical application[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(03):1-11. DOI: 10.13471/j.cnki.acta.snus.2020.11.18.2020C026.
硅纳米粒子作为一类新兴的荧光纳米材料在生物传感研究方面有许多优势。近年来,开展功能化硅纳米粒子修饰在生物传感器、生化分析、荧光探针等方面受到科研工作者的广泛关注。本综述对硅纳米粒子的功能化修饰技术,及其在荧光检测、生物传感、成像分析等领域的研究进展进行了总结和评述,并对硅纳米粒子的功能化发展前景及应用进行了展望。
As a newly emerging nanomaterial, silicon nanoparticle possesses many advantages in the application of biosensor. In recent years, silicon nanoparticles have been received widespread attention in biosensor, bioanalytical, and fluorescence probe. Herein, the functional modification, and application in fluorescence detection, biosensor, and imaging analytical of silicon nanoparticles were reviewed. Moreover, the future functional modification developments and application of silicon nanoparticles are also discussed.
硅纳米粒子细胞成像功能化修饰生物传感荧光检测
silicon nanoparticlescell imagingfunction modificationbiosensorfluorescence detection
ALGAR W R, MASSEY M, KRULL U J. The application of quantum dots, gold nanoparticles and molecular switches to optical nucleic-acid diagnostics[J]. Trend Anal Chem, 2009, 28: 292-306.
YU Y, BI L. Phosphorescent quantum dots/ethidium bromide nanohybrids based on photoinduced electron transfer for DNA detection[J]. Spec Acta A, 2015, 140: 479-483.
LI D X, QIN J, YAN G Q. A phosphorescent sensor for detection of micrococcal nuclease base on phosphorescent resonance energy transfer between quantum dots and DNA-ROX[J]. Sens Actuators B Chem, 2018, 255: 529-535.
CHEN H, WU L, WAN Y, et al. One-step rapid synthesis of fluorescent silicon nanodots for a hydrogen peroxide-related sensitive and versatile assay based on the inner filter effect[J]. Analyst, 2019, 144: 4006-4012.
CHEN X, ZHANG X, XIA L Y, et al. One-step synthesis of ultrasmall and ultrabright organosilica nanodots with 100% photoluminescence quantum yield: long-term lysosome imaging in living, fixed, and permeabilized cells[J]. Nano Lett, 2018, 18: 1159-1167.
DHENAGHAYALAN N, LEE H L, YADAV K, et al. Silicon quantum dot-based fluorescence turn-on metal ion sensors in live cells[J]. ACS Appl Mater Interfaces, 2016, 8: 23953-23962.
HE C, ZHANG J L, LI W, et al. Engineering oligonucleotide-based peroxidase mimetics for the colorimetric assay of S1 nuclease[J]. Anal Methods, 2018, 10: 1405-1412.
SU Y, JI X, HE Y. Water-dispersible fluorescent silicon nanoparticles and their optical applications[J]. Adv Mater, 2016, 28: 10567-10574.
ROY D, MAJIHI K, MONDAL M K, et al. Silicon quantum dot-based fluorescent probe: synthesis characterization and recognition of thiocyanate in human blood[J]. ACS Omega, 2018, 3: 7613-7620.
SHANDILYA R, BHARGAVA A, BUNKAR N, et al. Nanobiosensors: point-of-care approaches for cancer diagnostics[J]. Biosens Bioelectron, 2019, 130: 147-165.
HE Y, SU S, XU T T, et al. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection[J]. Nano Today, 2011, 6: 122-130.
KOJIMA T, FUJII M. Size-dependent photocatalytic activity of colloidal silicon quantum dot[J]. J Phys Chem C, 2018, 122: 1874-1880.
FUJII M, LIMPENS R, NEALE N R, et al. Negligible electronic interaction between photoexcited electron–hole pairs and free electrons in phosphorus–boron Co-doped silicon nanocrystals[J]. J Phys Chem C, 2018, 122: 6397-6404.
ROWE D J, JEONG J S, MKHOYAN K A, et al. Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance[J]. Nano Lett, 2013, 13: 1317-1322.
SATO K, YOKOSUKA S, TAKIGAMI Y, et al. Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility[J]. J Am Chem Soc, 2011, 133: 18626-18633.
MA X, TU C, PERIKLIS P, et al. Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages[J]. J Am Chem Soc, 2010, 132: 2016-2023.
MARICN B R, ZHANG X M, DAVID B, et al. Synthesis and characterization of manganese doped silicon nanoparticles bifunctional paramagnetic optical nanomaterial[J]. J Am Chem Soc, 2007, 129: 10668-10669.
McVEY B F, BUTKUS J, HALPERT J E, et al. Solution synthesis and optical properties of transition-metal-doped silicon nanocrystals[J]. J Phys Chem Lett, 2015, 6: 1573-1576.
CHANDRA S,GHOSH B,BEAUNE G,et al. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning [J]. Nanoscale, 2016, 8: 9009-9019.
JI X Y, WANG C Y, TANG M M, et al. Biocompatible protamine sulfate@silicon nanoparticle-based gene nanocarriers featuring strong and stable fluorescence[J]. Nanoscale, 2018, 10: 14455-14463.
LI Q, HE Y, CHANG J, et al. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature[J]. J Am Chem Soc, 2013, 135: 14924-14927.
RINCK J, SCHRAY D, KUBEL C, et al. Size-dependent oxidation of monodisperse silicon nanocrystals with allylphenylsulfide surfaces[J]. Small, 2015, 11: 335-340.
SO W Y, LI Q, LEGASPI C M, et al. Mechanism of ligand-controlled emission in silicon nanoparticles[J]. ACS Nano, 2018, 12: 7232-7238.
ZHOU T, ANDERSON R T, LI H, et al. Bandgap tuning of silicon quantum dots by surface functionalization with conjugated organic groups[J]. Nano Lett, 2015, 15: 3657-3663.
ZONG C, AI K, ZHANG G, et al. Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+[J].Anal Chem, 2011, 83: 3126-3132.
CHU B, WANG H, SONG B, et al. Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells[J].Anal Chem, 2016, 88: 9235-9242.
LI Q, LUO T Y, ZHOU M, et al. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law[J].ACS Nano, 2016, 10: 8385-8393.
TU C C, AWASTHI K, CHEN K P, et al. Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long-lived fluorescence[J]. ACS Photonics, 2017, 4: 1306-1315.
ZHANG Y, GUO S, JIANG Z, et al. Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells[J]. Anal Chem, 2018, 90: 9796-9804.
ZHANG Y, GUO S, CHENG S, et al. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement[J]. Biosens Bioelectron, 2017, 94: 478-484.
WEI W, HE J, WANG Y, et al. Ratiometric method based on silicon nanodots and Eu(3+) system for highly-sensitive detection of tetracyclines[J]. Talanta, 2019, 204: 491-498.
LIU J L, LIU L P, CHEN J, et al. Selective and rapid detection of mercury ion based on DNA assembly and nicking endonuclease-assisted signal amplification[J]. Anal Methods, 2019, 11: 3073-3078.
PHAN L M T, BAEK S H, NGUYEN T P, et al. Synthesis of fluorescent silicon quantum dots for ultra-rapid and selective sensing of Cr(Ⅵ) ion and biomonitoring of cancer cells[J]. Mater Sci Eng C, 2018, 93: 429-436.
TANG M, ZHU B, QU Y, et al. Fluorescent silicon nanoparticles as dually emissive probes for copper(Ⅱ) and for visualization of latent fingerprints[J]. Microchim Acta, 2019, 187: 65-75.
XIANG G, WANG Y, ZHANG G, et al. Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples[J]. Food Chem, 2018, 260: 13-18.
NA M, CHEN Y, HAN Y, et al. Determination of potassium ferrocyanide in table salt and salted food using a water-soluble fluorescent silicon quantum dots[J]. Food Chem, 2019, 288: 248-255.
BISWAS S, PAL K, KUMAR P, et al. A fluorogenic probe for in vitro and in vivo detection of biothiols and vitamin-C with an in-depth mechanistic understanding[J]. Sens Actuators B Chem, 2018, 256: 186-194.
CHEN K, QING W, HU W, et al. On-off-on fluorescent carbon dots from waste tea: their properties, antioxidant and selective detection of CrO(2-)4, Fe(3+), ascorbic acid and L-cysteine in real samples[J]. Spec Acta A, 2019, 213: 228-234.
CHEN P, ZHONG H, WANG X, et al. A label-free colorimetric strategy for facile and low-cost sensing of ascorbic acid using MnO2 nanosheets[J]. Anal Methods, 2019, 11: 1469-1474.
EMADI K P, VERJEE Z, LEVIN A V, et al. Measurement of intracellular vitamin C levels in human lymphocytes by reverse phase high performance liquid chromatography (HPLC)[J]. Clin Biochem, 2005, 38: 450-456.
LI Z, REN X L, HAO C X, et al. Silicon quantum dots with tunable emission synthesized via one-step hydrothermal method and their application in alkaline phosphatase detection[J]. Sens Actuators B Chem, 2018, 260: 426-431.
LONG Y, ZHANG L, YU Y, et al. Silicon nanoparticles synthesized using a microwave method and used as a label-free fluorescent probe for detection of VB12[J]. Luminescence, 2019, 34: 544-552.
MAO G, DU M, WANG X, et al. Simple construction of ratiometric fluorescent probe for the detection of dopamine and tyrosinase by the naked eye[J]. Analyst, 2018, 143: 5295-5301.
WANG X, ZENG Y, SHENG L, et al. A cinchona alkaloid antibiotic that appears to target ATP synthase in streptococcus pneumoniae[J]. J Med Chem, 2019, 62: 2305-2332.
ZHU R, HUANG W, MA X, et al. Nitrogen-doped carbon dots-V2O5 nanobelts sensing platform for sensitive detection of ascorbic acid and alkaline phosphatase activity[J]. Anal Chim Acta, 2019, 1089: 131-143.
ZHANG X, CHEN X, KAI S, et al. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles[J]. Anal Chem, 2015, 87: 3360-3365.
XU Y, LIU S Y, LIU J, et al. In situ enzyme immobilization with oxygen-sensitive luminescent metal-organic frameworks to realize "All-in-One" multifunctions[J]. Chemistry, 2019, 25: 5463-5471.
CIESLA M, SKRZYPEK K, KOZAKOWSKA M, et al. MicroRNAs as biomarkers of disease onset[J]. Anal Bioanal Chem, 2011, 401: 2051-2061.
DENG R, ZHANG K, SUN Y, et al. Highly specific imaging of mRNA in single cells by target RNA-initiated rolling circle amplification[J]. Chem Sci, 2017, 8: 3668-3675.
KELLEY S O, MIRKIN C A, WALT D R, et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering[J]. Nat Nanotechnol, 2014, 9: 969-980.
LU J, GETA G, MISK E A, et al. MicroRNA expression profiles classify human cancers[J]. Nature, 2005, 435: 834-838.
BARREY E, SAINT A, BONNAMY B, et al. Pre-microRNA and mature microRNA in human mitochondria[J]. PLoS One, 2011, 6: 202202-202234.
CHEN C, RIDZON D A, BROOMER A J, et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J]. Nucleic Acids Res, 2005, 33: 179-188.
DUAN R, ZUO X, WANG S, et al. Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification[J]. J Am Chem Soc, 2013, 135: 4604-4607.
CHEN J, AN T, MA Y, et al. Isothermal amplification on a structure-switchable symmetric toehold dumbbell-template: a strategy enabling microRNA analysis at the aingle-cell level with ultrahigh specificity and accuracy[J]. Anal Chem, 2018, 90: 859-865.
CHEN J, YIN W, MA Y, et al. Imaging of intracellular-specific microRNA in tumor cells by symmetric exponential amplification-assisted fluorescence in situ hybridization[J]. Chem Commun, 2018, 54: 13981-13984.
YIN W, CHEN J, YANG H, et al. Sensitive and sustained imaging of intracellular microRNA in living cells by a high biocompatible liposomal vehicle introduced isothermal symmetric exponential amplification reaction[J]. Chem Commun, 2019, 55: 11251-11254.
MA Y, CHEN J, CHEN D, et al. Short-probe-based duplex-specific nuclease signal amplification strategy enables imaging of endogenous microRNAs in living cells with ultrahigh specificity[J].Talanta, 2018, 186: 256-264.
LI H, MU Y, LU J, et al. Target-cell-specific fluorescence silica nanoprobes for imaging and theranostics of cancer cells[J]. Anal Chem, 2014, 86: 3602-3609.
ZHANG Y, NING X, MAO G, et al. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching[J].Anal Bioanal Chem, 2018, 410: 3209-3216.
DING L H, LIU H Y, ZHANG L N, et al. Label-free detection of microRNA based on the fluorescence quenching of silicon nanoparticles induced by catalyzed hairpin assembly coupled with hybridization chain reaction[J].Sens Actuators B Chem, 2018, 254: 370-376.
BENEZRA M, PENATE M O, ZANZONICO P B, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma[J]. J Clin Invest, 2011, 121: 2768-2780.
JOKERST J V, GAMBHIR S S. Molecular imaging with theranostic nanoparticles[J]. Acc Chem Res, 2011, 44: 1050-1060.
PHILLIPS E, PENATE M O, ZANZONICO P B, et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe[J].Sci Transl Med, 2014, 6: 149-172.
MENG X, WANG H, CHEN N, et al. A Graphene-silver nanoparticle-silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria[J]. Anal Chem, 2018, 90: 5646-5653.
TANG J, CHU B, WANG J, et al. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of gram-negative and gram-positive bacteria[J]. Nat Commun, 2019, 10: 4057-4071.
WANG J, JIANG A, WANG J, et al. Dual-emission fluorescent silicon nanoparticle-based nanothermometer for ratiometric detection of intracellular temperature in living cells[J]. Faraday Discuss, 2020, 222: 122-134.
CHEN J, YANG H H, YIN W, et al. Metastable dumbbell orobe-based hybridization chain reaction for sensitive and accurate imaging of intracellular-specific microRNAs in situ in living cells[J].Anal Chem, 2019, 91: 4625-4631.
ROY D, FOUZDER C D, MUKHUTY A, et al. Designed synthesis of dual emitting silicon quantum dot for cell imaging: direct labeling of alpha 2-HS-glycoprotein[J]. Bioconjugate Chem,2019, 30: 1575-1583.
HE X, WANG Y, WANG K, et al. Fluorescence resonance energy transfer mediated large stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging[J].Anal Chem,2012,84: 9056-9064.
WU S, ZHONG Y, ZHOU Y, et al. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles[J].J Am Chem Soc, 2015,137: 14726-14732.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构